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Introduction

This thesis explores the problems raised by the aggregation of entities into a global,

collective level. This is certainly an old problem in many fields of science. Already in

the 5th century before Christ, Leucippus of Miletus started the atomic tradition, which

argued that differences in atomic shape and size determined the various properties of

matter. At the Renaissance, thinkers started to think about the articulation between

individuals and a global entity called society thanks to quantitative data. In the 19th

century, Thomas Buckle published the History of Civilization in England which aimed

at showing that, while individual destinies seem erratic and unpredictable, statistical

laws do govern the course of human progress in a fixed and regular way. Maxwell

was influenced by his reading of this very well-known work when he founded statistical

physics by abandoning a Newtonian view of deterministic atoms to seek explanations

in terms of statistics. This allowed him to explain quantitatively how the macroscopic

characteristics of gases depend on its atoms’ behaviours.

More generally, fundamental science has striven to reduce the diversity of the world

to some stable building blocks such as atoms and genes. To be fruitful, this reductionist

approach must be complemented by the reverse step of obtaining the properties of

the whole (materials, organisms) by combining the microscopic entities, a notoriously

difficult task (Hayden, 2010; Chouard, 2008; Anderson, 1972; Grauwin et al., 2009a;

Gannon, 2007). Therefore, linking the microscopic and macroscopic behavior is at the

heart of many natural and social sciences. However, this apparent similarity conceals

essential differences across disciplines: while physical particles are assumed to optimize

the global energy, economic agents maximize their own utility. In sociology, the very

distinction of two levels (individuals and social groups) is put into question, as humans

cannot properly be defined without taking into account the social groups they need to
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live in (e.g. language, an essential part of the individual which is acquired through

society).

More specifically, our scope here is to address the aggregation problem in social

systems, using tools derived from statistical physics, and more generally quantitative

tools. This problem has received new impetus recently, mainly from to the avalanche

of digital data on social systems. These cover many different fields (Lazer, 2009): stock

markets, demographics, geographical tracking of individual mobility, social networking,

scientometrics. . . The amount and quality of these data open the possibility of a profound

renewal of quantitative sociology (Latour, 2010).

The increase of computing power has also brought the possibility of modelling com-

plex socio-economic systems in a new way. Agent-based models simulate virtual soci-

eties in which simple rules are used to characterize the actions and interactions of large

amount of agents. Simulations have shown that unexpected collective behaviors may

emerge from these simple rules (Schelling, 1969). In economics, they have allowed to go

beyond the simplistic assumptions of, for example, perfectly rational agents, which are

necessary to obtain analytical theories (Grauwin et al., 2009b) but can lead to unrealistic

predictions (Bouchaud, 2008).

The situation seems ripe for tighter connections between social and natural scientists.

As most social scientists lack the training needed to handle, visualize and model massive

amount of data, they could benefit from collaborations with mathematicians, computer

scientists or physicists, who are more familiar with that kind of tools. However, for

these collaborations to be fruitful, mutual knowledge and respect are essential. From

our “modelling” side, one has to be cautious to understand and respect the specificity

of social systems, without trying to export our preferred models in a “wild way” (what

Bernard Walliser called “brute transfer analogies” (Walliser, 2005)).

In the following, we present three examples of our “respectful” approach to the

modelling of social systems. These three parts of the thesis can be read independently.

Individual dynamics and Schelling’s segregation model

The first part of this thesis focuses on a paradigmatic model of the emergence of puz-

zling macroscopic behaviour from simple individual rules, Schelling’s segregation model

(Schelling, 1969, 1978). As soon as 1969, Thomas C. Schelling proposed a model aiming

at formalizing the aggregate consequences of individual preferences regarding the social

environment. In his 1971’s Dynamic Models of Segregation paper, he simulates the evo-

lution of the spatial repartition of two types of agents living in a virtual city. The agents

14



have preferences over the composition of their neighborhood and are given the oppor-

tunity to move in order to satisfy their preferences, or utilities. Schelling shows that

even “mildly” segregative individual preferences lead to high levels of segregation, even

if this global outcome does not correspond to a residential configuration maximizing the

collective utility. In other words, the global pattern is not a linear extrapolation of the

individual preferences.

Schelling’s 1971 paper is widely known thanks to this apparently paradoxical effect:

a mild preference for one’s neighbors to be of the same color leads to total segregation,

even if total segregation does not maximize collective utility. Later research showed that

even a peaked utility function, that is, a function achieving its maximum for a 50%- 50%

environment, can lead to a fully segregated equilibrium as soon as this function is asym-

metric - even in a city where the two groups are equally proportioned (Zhang, 2004b;

Pancs & Vriend, 2007; Barr & Tassier, 2008). Schelling’s results are also robust to

different definitions of individual’s environment (Pancs & Vriend, 2007; Fagiolo et al.,

2007). Recently, Zhang (2004a,b, 2010) developed analytical solutions to different ver-

sions of Schelling’s model. Basically, the paradox arises from a lack of coordination

among agents, which generate externalities preventing the system to reach the social

optimum. Our work on Schelling’s model builds on this literature.

The two first chapters focus on economics’ aspects of Schelling’s model. Chapter

one examines the effects of introducing coordination in the moving decisions. This co-

ordination is achieved in two different ways. We first impose different levels of taxes

proportional to the externality generated by each move of the agents. We then investi-

gate the effect of the introduction of a local coordination by vote of co-proprietors, who

are defined as the closest neighbors of each agent. In both cases, we show that even a

small amount of coordination can significantly reduce segregation.

Chapter two proposes an analytical resolution of Schelling segregation model for a

wide range of utility functions. Using evolutionary game theory, we provide existence

conditions for a potential function, which characterizes the global configuration of the

city and is maximized in the stationary state. We use this potential function to analyze

the outcome of the model for three utility functions corresponding to different degrees

of preference for mixed neighborhoods. The main results are :

• We show that linear utility functions are the only case for which the potential

function is proportional to collective utility, the latter being hence maximized in

stationary configurations.

• Schelling’s original utility function is shown to drive segregation at the expense of
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collective utility.

• If agents have a strict preference for mixed neighborhoods but still prefer being in

the majority versus in the minority, the model converges to perfectly segregated

configurations, which clearly diverge from the social optimum.

Departing from earlier literature, these conclusions are based on analytical results.

Our model being based on bounded neighborhoods rather than continuous ones (as in

Schelling’s original model), we discuss the differences between the bounded and contin-

uous definition of neighborhoods and show that, in the continuous neighborhood case, a

potential function exists if and only if the utility functions are linear. As a by-product,

our analysis builds a bridge between Schelling’s model and the Duncan and Duncan

segregation index. The collaboration with an economist (Florence Goffette-Nagot) has

lead to two papers submitted to economics’ journals. One is almost accepted in a pres-

tigious journal (J of Public Economics), showing the relevance of our approach for that

community, while the other is also submitted to a very good journal (J of Economic

Behavior and Organization).

Chapter 3 switches to a physicist’s point of view on Schelling model. We focus on a

simplified version of the model, with agents of a single color and vacant sites, which still

retains the essential feature of the original model, namely the paradox of macroscopic

segregation for microscopic “tolerant” individuals. By generalizing the concept of free

energy in order to include dynamics driven by individual optimization, we are able to

solve exactly the model for arbitrary utility functions. Specifically, we introduce a pa-

rameter which interpolates continuously between cooperative and individual dynamics.

We show that increasing the degree of cooperativity induces a qualitative transition from

a segregated phase of low utility towards a mixed phase of high utility. This work has

been published in PNAS in 2009.

In the last chapter, we present our “linking” approach in a more general way. We

show how our approach could pave the way to analytical treatments of a wide range of

socio-economic models. As a first example, we derive an analytic solution for a conges-

tion model. This chapter has been accepted for publication in Advances in Complex

Systems (2011).

Maps of Science

The second part of this thesis addresses the question of emergence of macroscopic fea-

tures out of interactions between individuals from a different perspective. Instead of
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simulating simple models, it uses data from real social systems and explores the ques-

tion of aggregation of these data into insightful (social) groups. Specifically, we use the

huge existing databases on scientific literature (mainly Web of Science) to investigate

the existence and evolution of paradigms or scientific institutions.

Chapter 5 tackles the question of the existence and coherence of a hypothetical

field, that of “complex systems science”. Picking up again the reductionist theme, it is

interesting to note that the science of complex systems tries to obtain the properties of

the whole by combining the microscopic entities, albeit from a different perspective. It

adds the idea that “universal principles” could exist, which would allow for the prediction

of the organization of the whole regardless of the nature of the microscopic entities.

Ludwig Von Bertalanffy wrote already in 1968: “It seems legitimate to ask for a theory,

not of systems of a more or less special kind, but of universal principles applying to

systems in general” (Von Bertallanffy, 1976). This dream of universality is still active:

“[Complex networks science] suggests that nature has some universal organizational

principles that might finally allow us to formulate a general theory of complex systems”

(Solé, 2000). Have such universal principles been discovered? Could they link disciplines

such as sociology, biology, physics and computer science, which are very different in both

methodology and objects of inquiry (SantaFe, 2010)? Or does the “complexity” field

have too high a “mouth to brain ratio” (Scientific American, 1995)?

Thanks to a large database (141 098 records) of relevant articles published between

2000 and 2008, we empirically study the “complex systems” field and its claims to find

universal principles applying to systems in general. The study of references shared

by the papers allows us to obtain a global point of view on the structure of this highly

interdisciplinary field. We show that its overall coherence does not arise from a universal

theory but instead from computational techniques and fruitful adaptations of the idea of

self-organization to specific systems. We also find that communication between different

disciplines goes through specific “trading zones”, ie sub-communities that create an

interface around specific tools (a DNA microchip) or concepts (a network). We have

also gathered an exhaustive database of French natural science articles (around 65 000

published in 2000 and 80 000 in 2010) to investigate the place of complex systems science

within the whole landscape of science. These maps suggest that there exists (yet?) no

conceptual kernel for “complexity science”, some unified set of theories or concepts that

could give the field enough coherence to be a subfield identifiable by shared references

(and therefore by bibliographic coupling). Certainly, Self-Organization, Self-Organized

Criticality or Complex Networks do constitute such coherent subfields. However, despite

some claims, these subfields seem to have only weak links to the rest of the complex
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systems “galaxy” shown above, which prevents the formation of a coherent “complex

systems science”. This work is currently submitted to Plos One.

In chapter 6, we develop a set of routines that allows to draw, in a few hours,

different maps of the research carried out in a scientific institution. Our toolkit uses

OpenSource elements to analyze bibliometric data gathered from the Web Of Science.

We take the example of our institution, ENS de Lyon, to show how different maps,

using co-occurrence (of authors, keywords, institutions...) and bibliographic coupling

can be built. These maps may become a valuable tool for institutions’ directors, as

they offer different views on the institution at a global scale. This work is submitted to

Scientometrics.

In these two studies, we use an old but quite forgotten approach to measure the

relations between articles, i.e. bibliographic coupling (Kessler, 1963). The idea is that

papers sharing references are closer than papers with no common reference. By group-

ing similar papers with standard techniques (such as modularity optimization (Girvan &

Newman, 2004)), we define scientific communities or subdisciplines in a “natural” way,

which is in any case largely independent of administrative or institutional structures such

as disciplines or laboratories. This has the decisive advantage of allowing for a “fresh”

look at science in action or research frontiers. For example, we identify a large commu-

nity working on complex networks that has received no institutional support (in France

at least) or recognition in terms of “subject categories” from Web of Science and would

therefore be invisible had we interrogated the database through these categories. We

also identify several distinct communities working on nanostructures in France (labelled

as nanoindentation, nanowires, quantum dots . . . ) in 2010, which questions the use of

a single discipline from an institutional point of view. In short, using large databases

should not prevent scientists from inquiring about the interpretation of these data : the

categories used to extract the data or the meaning of the aggregations used to examine

it.

Emergence of Institutions in Social Systems

The meaning of aggregations in the social space is the central question of the last part

of the thesis. Various sociological theories try to apprehend social phenomena under

different points of view. According to the holistic paradigm, mainly based on Emile

Durkheim’s ideas, individuals are embedded into social structures and institutions that

constrain them, shape their actions and emotions. On the contrary, in the atomic (or

individualistic) paradigm, individuals should be considered as the central ontological
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elements in social systems. Constant interactions between the “social atoms” construct

society, ie structures, institutions, norms, which are supposed to serve the interests of

the individuals. Both the holistic and the atomistic approaches are based on a strong

assumption: there is a clear dichotomy between two “levels”, namely individuals and

society. This distinction is common to many fields and is often summarized by the

notion that “the whole is greater than the sum of its parts”.

Chapter 7 questions this fundamental distinction. For more than a year, we have

been collaborating with a team of sociologists from the MediaLab at Sciences Po. The

scope is to use the social theory developed by Gabriel Tarde at the end of the 19th

century to imagine different ways of conceptualizing the articulation between “wholes”

and “parts”. One hypothesis is that the distinction between two levels is an artefact

originating in the difficulty of navigating through huge amounts of data. This hinders

the possibility to visualizing (and therefore conceptualizing) the evolution of social phe-

nomena without making a distinction between the individual and the aggregated levels.

Using scientometrics data, we first explore alternative ways of visualizing wholes and

parts. We have also been working in collaboration with the MediaLab sociologists in

order to attempt to formalize Tarde’s ideas in a model which would lead to a simula-

tion algorithm. We started by defining the features requested by sociologists for the

algorithm to be faithful to Tarde’s intuitions. The main point was to obtain “wholes”

through the simplification of complex individuals. We then developed a first prototype

which fulfilled several of these demands but raised many more questions. While this

process was positive because it uncovered several fuzzy features in Tarde’s social theory,

it also turned out that the scope of the model was too ambitious for the time scale of this

thesis. Chapter 8 then presents the current state of ongoing work on another - more

standard - approach into emergence of social structures. We still focus on a question

raised by our colleagues sociologists, namely the existence of lasting structures from non

lasting entities. But we use the standard (and safer!) physicist approach : start with

simple individuals and build groups with interesting features. Specifically, our model

is based on Deffuant’s opinion model (Deffuant et al., 2000) with an adaptive network

similar to what can be found in Kozma & Barrat (2008). While these papers focus on

the stationary properties of the model - the final, stable states reached at the end of the

simulations - we chose to build a model to investigate the dynamical properties of social

structures which would always be changing. For this, we have added three features.

First, noise, which allows to recover the intuitive fact that convergence of opinions can-

not be strictly limited to persons already sharing similar opinions. Second, we add the

possibility for agents to “die”, to investigate whether the groups obtained lasted longer
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than the typical agent lifetime. Third, we introduce heterogeneity in opinion space by

adding the “age” of the agent as a characteristic influencing the exchange of opinions.

While the outcomes of the model are not yet fully explored, we already found interesting

group dynamics. All along the runs, new groups may emerge, groups may disappear

by merging with other groups or by death of all their agents, some groups may last for

hundreds of agents’ lifetimes. . . These investigations echo the famous study by Georg

Simmel of “the persistence of social groups” Simmel (1898): “it is meaningful to speak

of group identity, despite shifting membership and low institutionalization, if there is

some membership continuity in contiguous stages [...] The change, the disappearance

and entrance of persons, affects in two contiguous moments a number relatively small

compared with the number of those who remain constant. The departure of the older

and the entrance of the younger elements proceed so gradually and continuously that

the group seems as much like a unified self as an organic body in spite of the change of

its atoms”.

Despite this tempting parallel, we do not think that this kind of simplistic model

should aim at being realistic by inclusion of additional ingredients. Rather, our dis-

cussions with Sciences Po’s sociologists open another direction. We speculate that

these models can help them enriching their conceptualizations of the structuration phe-

nomenon. This could arise from a detailed examination of the structurations that hap-

pen in this virtual society and their tentative interpretation using the usual sociological

theories. Does this confrontation help them in any way in renewing their conceptual

repertoire? Do we observe group evolutions that are unexpected and difficult to explain?

The future of this stimulating and demanding collaboration will tell!
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Individual dynamics and

Schelling’s segregation model
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Chapter 1

Schelling’s Model with Local
Coordination

1.1 Introduction

As soon as 1969, Thomas C. Schelling proposed a model aiming at formalizing the aggre-

gate consequences of individual preferences regarding the social environment (Schelling,

1969, 1978). In his 1971’s Dynamic Models of Segregation paper, Schelling showed that

if the preferences considered are such that an environment of more than 50% of own-

group agents is highly preferred to a less than 50% of own-group environment, then the

equilibrium configuration exhibits high levels of segregation. Schelling’s 1971 paper is

widely known thanks to this apparently paradoxical effect: a mild preference for one’s

neighbors to be of the same color leads to total segregation, even if total segregation

does not maximize collective utility. Later research showed that even a peaked utility

function, that is, a function achieving its maximum for a 50%- 50% environment, can

lead to a fully segregated equilibrium as soon as this function is asymmetric - even in

a city where the two groups are equally proportioned (Zhang, 2004b; Pancs & Vriend,

2007; Barr & Tassier, 2008). Later literature showed that Schelling’s results are also

robust to different definitions of individual’s environment (Pancs & Vriend, 2007; Fagi-

olo et al., 2007). A physical analogue of Schelling model (Vinkovic and Kirman, 2006)

was proposed. Zhang (2004a,b, 2010) develop analytical solutions to different versions

of Schelling’s model. Grauwin et al. (2009a, 2011) generalize this type of solution and

propose an analytical treatment that allows to calculate the global segregation pattern

starting from a broad range of individual utility functions.

In Schelling-type models, an assumed condition for integration to occur is that agents
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have a preference for mixed environments. But that condition is often not a sufficient

one, because mixed configurations are unstable with respect to fluctuations, whereas

segregated configurations are very stable. The stability of the city configurations and

the gaps between the agents’ micro-motives and the emergent macro-behavior have been

recognized as the results of a coordination problem (Zhang, 2004a,b, 2010). It is indeed

the existence of locational externalities, that is, the fact that moving agents do not take

into account their impact on their neighbors’ utilities, that moves the city to highly

segregated configurations, even if individuals’ preferences favor a mixed environment.

This is particularly the case when the agents’ preferences are given by the asymmetrically

peaked utility function, the system ending in highly segregated configurations whereas

the agent’s main preference is for mixed neighborhoods (Zhang, 2004b; Pancs & Vriend,

2007; Grauwin et al., 2009b,a). Externalities produced by agents’ mobility are also

encountered in economic geography (see Charlot et al, 2006) and little is known about

the means allowing to fight them.

A way to reach the welfare maximizing configuration in Schelling model could be

a mechanism internalizing the externalities generated by the agents’ selfish moves. To

do so, a classical idea in economics is to impose a taxation equal to the generated

externality. Such a policy implemented by a central authority is known to lead to social

optimum, where the collective utility reaches its highest possible value. Recently, some

papers have proposed to add some corrective mechanisms in the original Schelling model

to reinforce the integrated configurations. Dokumaci & Sandholm (2007) propose to tax

the agents proportionally to the density of population in their neighborhood. The tax

level depends on the ethnic origin of the agents, as might be the case under various form

of affirmative action. Barr & Tassier (2008) introduces additional social interactions into

Schelling’s model by coupling it with a Prisoner’s Dilemma played with neighbors. In

both cases however, the effect of the added mechanism could be reformulated in terms

of a redefinition of the agents’ utility function.

The present chapter, based mainly on simulations, examines the effects of intro-

ducing coordination in the moving decisions, and shows that even a small amount of

coordination can break segregation. We first verify that introducing a Pigouvian tax

leads to the social optimum in a dynamic model of segregation with an asymetrically

peaked utility function (section 3). We also investigate the impact of different levels of

taxes and we show that a tax equal to only one fifth of the generated externalities is suf-

ficient in certain cases to reduce consequently the gap between the equilibrium and the

social optimum, created by the agents’ selfish behavior. To the best of our knowledge,

this work has never been done in the context of Schelling segregation models. However,



CHAPTER 1. SCHELLING’S MODEL WITH LOCAL COORDINATION 25

these tax policies are not easy to implement in practice since they require from the

central authority a perfect knowledge of the city at the local scale. Such information is

rarely perfectly nor freely available. Hence, the policies implemented by central author-

ities correspond generally to mechanisms that differ from the Pigouvian tax. Therefore,

we propose in section 4 a tax based on the share of similar neighbors’ in agents’ neigh-

borhoods. Finally, we investigate in section 5 the effect of the introduction of a local

coordination by vote of co-proprietors. That completely new coordination mechanism

has the advantage of remaining in the spirit of Schelling’s model, adding only individual

decisions based on the same utility as the moving agent, without any need of a central

authority. Before developing models with some coordination, we present in section 2 the

standard Schelling model which we will use as a benchmark.

1.2 A standard model

1.2.1 Basic setup

The city and neighborhood definition

Our artificial city is a two-dimensional NxN square lattice with periodic boundary

conditions, ie a torus containing N2 cells. Each cell corresponds to a dwelling unit, all

of equal quality. We suppose that a certain characteristic divides the population of this

city in two groups of households that we will refer to as red and green agents. Each

location may thus be occupied by a red agent, a green agent, or may be vacant. We

denote by NV the number of vacant cells, and by NR and NG the number of respectively

red and green agents. All these numbers are kept fixed over a simulation. The parameter

N thus controls the size of the city, the parameter v = NV /N
2 its vacancy rate, and the

fraction nR = NR/(NR +NG) its composition.

We define a state x of the city as a N2-vector, each element of this vector labeling

a cell of the NxN lattice. Each state x thus represents a specific configuration of the

city. We note X the set of all possible configurations, the demographic parameters (N ,

v, nR) being fixed.

Since Schelling (1969)’s work, continuous neighborhood models describe cities where

the neighborhoods are centered on the local perception of each agent. In a continuous

neighborhood description, one assumes that the neighborhood of an agent is composed

of the H nearest locations surrounding him. The H = 4 “Von Neumann neighborhood”

and the H = 8 “Moore neighborhood” that are displayed among other examples on Fig

2.1 are the most commonly used neighborhoods in agent-based computational models.
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Figure 1.1: Different forms of neighborhood. Red, green and white squares denote respectively
red agents, green agents and vacant cells. The neighborhood of an agent corresponds to his H nearest
cells/locations. Around the agents marked in yellow, we enlightened by the white frontiers a H = 4, a
H = 8, a H = 24 and a H = 44 continuous neighborhood. [If you printed this document in black and
white, the red and green squares should appear respectively in dark grey and soft grey.]

Note that since some locations remain empty, the size H of the neighborhood of an

agent can also be interpreted as the maximum number of neighbors an agent can have.

The global characteristics of our model remain qualitatively independent of any specific

definition of neighborhood, provided its size H is relatively small compared to the size

N2 of the city, in order to maintain the “local” property of neighborhood.

In all the simulations presented in this chapter, the demographic parameters of the

city are fixed. The size of the city is set to N2 = 400, a good compromise between the

necessity to take a large value of N to avoid small city effects1 and the convenience to

take a small value of N to achieve short computation times. The number of agents of

each group is fixed to NR = NG = 180 and the vacancy rate is fixed to v = 10%. As

usually assumed, we use continuous neighborhoods, that is, the neighbors of an agent

are the agents living on the H nearest cells surrounding him. Unless otherwise stated,

the neighborhood size is fixed to H = 8.

Agent’s utility function

Each agent computes his own level of satisfaction via a utility function which depends

only on his neighborhood composition. Let us consider an agent whose neighborhood is

composed of R red agents, G green agents and V vacant cells. Since R + G + V = H,

one needs two independent parameters to describe the composition of the neighborhood

of the agent. In all generality, we can thus write the utility of an agent for example as a

1Such as those emphasized by Singh et al (2009).
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function of R and G or as a function of the fraction s of the agent’s similar neighbors and

V . Most models of the literature assume for simplification that agents of a same group

share the same utility function. Hence, one only needs a utility function uR to describe

the preference of the red agents and a utility function uG to describe the preference of

the green agents.

It is easy to understand that a utility function can be defined up to an additive

constant depending on a reference situation but also up to a multiplicative constant

depending on the measure scale. A common choice in the literature is to take these

constants such that a zero utility level denotes a complete dissatisfaction of the agent

and a utility of one denote complete satisfaction. We will stick to that use in the

following.

We will suppose that all the agents share the same “asymmetrically peaked utility

function” um(s), where s is the fraction of one’s similar neighbors and 0 ≤ m ≤ 1; um

is defined by:

u(s) =

{
2s for s ≤ 0.5

2−m− 2(1−m)s for s > 0.5
(1.1)

Figure 1.2: In our simulations, the agents all share the same utility function um(s). We explore
the change in behavior of the agents according to the value of parameter m. Except for m = 1, the
agents always have a strict preference for perfectly mixed neighborhood. Except for m = 0, their utility
function presents an asymmetry: they prefer all-similar neighborhoods to all-dissimilar neighborhoods.

By varying the value of the parameterm, we will then be able to explore the responses

of our system to a whole family of utility functions. Our choice of working only with the

asymmetrically peaked utility function is driven by the fact for m > 0, the asymmetry

in favour of the all-similar neighborhood in these utility functions leads to segregation

patterns at the city scale at the cost of a low collective utility (see Grauwin et al., 2009b;

Pancs & Vriend, 2007; Barr & Tassier, 2008). This family of utility functions is thus

the perfect candidate for testing whether the introduction of any type of coordination



CHAPTER 1. SCHELLING’S MODEL WITH LOCAL COORDINATION 28

might allow to break segregative patterns and lead to more integrated patterns in which

the collective utility would be higher.

Aggregate measures

In order to characterize a configuration at the global (city) scale, we need to introduce

aggregate measures. Let sk, k ∈ {1, ..NR + NG} be the fraction of agent k’s similar

neighbors. In order to characterize the global level of segregation, we introduce for each

configuration x the average fraction of same-type neighbors, or similarity :

s̄(x) =
1

NR +NG

∑
k

sk (1.2)

Similarity is a well-known measure of segregation that was already used by Schelling

(1971). However, the knowledge of s̄(x) may not be sufficient to determine if the level

of segregation of a given configuration is significantly high or low compared to a random

configuration with the same demographic parameters: a similarity of 0.8 would point out

a high degree of segregation in a city with equally proportioned groups (nR = 0.5) but

would be insignificant in a city with disproportioned groups (nR = 0.9). To avoid this

kind of problem, we define in the spirit of Carrington & Troske (1997) the normalized

index of similarity s∗ : X → [−1, 1] by

s∗(x) =


s̄(x)− s̄random

1− s̄random
if s̄(x) ≥ s̄random

s̄(x)− s̄random
s̄random

if s̄(x) < s̄random

(1.3)

where s̄random is the expected value of the similarity index s̄ implied by a random

allocation of the agents in the city. This value depends on the size N , vacancy rate v

and composition nR of the city and on the size H of a neighborhood. However, in the

cases studied below, i.e. for nR = 0.5, v > 0, H ≥ 1, N � 1, the value of s̄random is

indistinguishable from 0.5.

Fig 1.3 displays some examples of configurations along with their s∗-values. The

reference value s∗ = 0 corresponds to an average random configuration. Positive val-

ues of s∗ mean that the agents have more similar neighbors than in the random case,

and negative values that their neighborhood contains less similar neighbors than in an

average random case. A maximum value s∗ = 1 corresponds to the case where all the

neighbors of all agents belong to their own group. Practically, given the random fluc-
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Figure 1.3: Some examples of configurations of the city, along with their s∗-values. For ordered
configurations such as a,c,d,e, the value of s∗ fluctuates with the precise location of the vacant cells.
The neighborhood size is H = 8 and the demographic parameters are fixed to (N = 20, v = 10%,
nR = 0.5).

tuations of the configurations, an absolute deviation larger than 0.05 corresponds to

configurations which deviate significantly from the random configuration. Notice finally

that the normalized similarity index cannot grasp every aspects of the city configura-

tions. Because of the random fluctuations, it can’t for example make the difference

between a ‘checkerboard’ (Fig. 1.3 c) ordered configuration and a random configuration

(Fig. 1.3 b).2

We also introduce notations in order to characterize the level of collective utility:

U(x) =
∑
k

uk (1.4)

U∗(x) =
1

NR +NG
U(x) (1.5)

where uk is the utility of agent k, U(x) denote the collective utility of a configuration x

and U∗(x) its normalized value.

1.2.2 The logit dynamic rule

As explained before, in standard Schelling-type models, agents move only to satisfy

their own interest. In our simulations, we consider that the dynamics follows a logit

behavioral rule: at each iteration, an agent and a vacant cell are randomly chosen and

the probability that this picked agent moves in that vacant cell is written as:

Pr{move; WC} =
1

1 + e−∆u/T
(1.6)

2For a complete and detailed discussion on segregation indices, see for example Massey & Denton
(1988), Reardon & Firebaugh (2004), Reardon & O’Sullivan (2004).
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where WC stands for “Without Coordination” and with T > 0 a fixed parameter and

∆u the change in utility if the agent was to move to the chosen cell. At the first iteration,

an initial configuration is randomly chosen.

The scalar T can be interpreted as a measure of the level of noise in an agent’s

decision. Clearly, the probability for an agent to take a utility-decreasing move drops

down as T → 0 and the described rule thus converges to the non-strict best-response

rule. For any finite T > 0, the agents choose non-best replies with a non-zero probability,

but actions that yield smaller payoffs are chosen with smaller probability.

This kind of perturbed best-response dynamics has been developed in e.g. Anderson

et al. (1992) or Young (1998). Taken as a behavioral rule, the underlying logit choice

function in Eq. 1.6 is rooted in the psychology literature (Thurston, 1928). From the

microeconomic point of view, it can be given a justification in terms of a random-utility

model where the random part in the utility function can be interpreted as a way to take

into account criteria other than the neighborhood composition such as the quality of

the housing, the proximity to one’s workplace or any other idiosyncratic amenity. As

shown in section 1.4, the logit dynamic rule has the advantage to grasp more aspects of

reality (taking into account idiosyncratic amenities) and to lead the system to stationary

results which are independent of the initial configuration. This is why we prefer that

kind of dynamics to a more standard “best response” dynamic rule.

Beside bringing some degree of realism through the introduction of randomness in the

agents’ behavior, the logit rule also provides a strong analytical framework to Schelling’s

model (see Grauwin et al., 2009a,b).

Obviously, it implies that the probability that the state at the tth iteration xt is

equal to a given state x only depends on the state at the previous iteration xt−1:

Pr(xt = x|xt−1, . . . , x1, x0) = Pr(xt = x|xt−1) (1.7)

The dynamic rule thus yields a finite Markov process.

It is then easy to figure out that the Markov chain describing our system is irreducible

(since T > 0 each imaginable move has a non-zero probability to happen and it is thus

possible to get to any state from any state), aperiodic (given any state x and any integer

k, there is a non-zero probability that we return to state x in a multiple of k iterations)

and recurrent (given that we start in state x, the probability that we will never return

to x is 0). These three properties ensure that the probability to observe any state x

after t iterations starting from a state y converges toward a fixed limit independent of

the starting state y as t→∞.
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In other words, for each set of parameters and dynamic rule, there exists a stationary

distribution

Π : x ∈ X → Π(x) ∈ [0, 1] ,
∑
x∈X

Π(x) = 1 (1.8)

which gives the probability with which each state x will be observed in the long run.

Clearly, for T → ∞, the randomness introduced in the dynamical rule prevails and

the stationary distribution is just a constant. Similarly, for any finite T > 0, our

dynamical system (the city) is evolving toward an attractor composed of a subset A of

X. It follows that any measureM performed on the states space X - such as the global

utility U - will in the long run fluctuate around a mean valueM∞ =
∑

x∈A Π(x)M(x).

These mean values may depend on the amplitude of the noise T , but the amplitude of

the fluctuations decreases as T → 0. These intuitions are confirmed later.

1.2.3 Simulations: influence of parameters m and T

We introduce the parameter τ as the average number of moves per agent. Considering

the demographic parameters used in our simulations, an increment of 1 in τ corresponds

to (1 − v)N2 = 360 performed moves. In the simulations presented below, we use τ as

a chronological reference.3

We present on Fig. 1.4 a typical evolution of the city in the case where the agents

move without coordination, the level of noise being fixed to T = 0.1 and the parameter

m to 0.5. Starting from a random configuration, we observe the rapid formation of

homogeneous areas which slowly melt into one another leading to the emergence of a

highly segregated configuration where the city is divided into two uniform areas, each

inhabited by only one type of agent. The bottom panel of Fig. 1.4 shows that after

a transition time, the city enters a stationary phase in which the segregation index s∗

and the (normalized) collective utility U∗ fluctuate with rather low amplitudes. Even

though the agents’ preferences go to mixed configurations, their moves lead to a highly

segregated configuration at the city level (the stationary value of s∗ is close to 0.8) in

which most of the agents are far from being fully satisfied (the stationary value of U∗ is

close to 0.6). As previously stated in the literature, this is the consequence of locational

externalities: agents slightly favor majority status over minority status and do not ac-

count for their impact on neighbors’ neighborhood composition (Zhang, 2004b; Pancs &

3A more obvious choice of chronological reference could be the number t of simple iterations (i.e.
the number of attempted moves). Neither choice accounts for the proportion of accepted moves (whose
cumulated value is τ/t), whose instantaneous value depends on the values of the various parameters and
on the state of the system. Ideally, it may be interesting to follow this rate of “moving iterations” with
the dynamic evolution of the city.
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Figure 1.4: Evolution towards a highly segregated configuration starting from a random configuration
in the case of the WC rule. Top panel. Some snapshots of the evolution of the city for a noise level
T = 0.1; Bottom panel. Evolution with τ of the index of similarity and of the collective utility for
different simulations with different noise levels. The grey dots on the T = 0.1 curves correspond to the
snapshots presented on the top panel. m = 0.5.

Vriend, 2007). This makes mixed neighborhoods unstable and segregated configurations

very stable. In particular, once the city is divided into homogeneous areas, a red (green)

agent will have no incentive to go from the red (green) area to the green (red) one,

because his utility would then drop from m to 0.

Fig. 1.4 further shows that the level of noise has an effect on the fluctuations of s∗ and

U∗ in the stationary phase. While these fluctuations are rather low for T = 0.05, their

amplitude increases with T before reaching a saturation value. Finally, while further

studies would be necessary to characterize the influence of T on the time needed to reach

the stationary phase, one can infer from fig 1.4 that as T decreases, this transition time

increases.

The influence of the parameters T and m on the stationary configurations can be

observed on Fig. 1.5 and 1.6. For high values of T (T ≥ 0.5), the dynamics is essentially

governed by the randomness introduced in the logit. In the limit T � 1, the agents are

distributed uniformly in the corresponding stationary configurations, which induces a

similarity index equal to zero for all values of m. In this case, the probability p(s) for

an agent to have a fraction s of similar neighbors being independent of m and thank to

the bilinear form of the asymmetrically peaked utility function, the collective utility can
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Figure 1.5: Typical stationary configurations obtained with the WC dynamic rule for
different values of m and T .

be written (the sums being taken on all the possible discrete values of s):

U∗ =
∑
s

p(s)u(s) = U∗m=0 +m
∑
s≥0.5

(2s− 1)p(s) (1.9)

This form explains the linear dependency to m of the stationary mean collective utility

observed on Fig. 1.6 for high values of T . Indeed, there are two parts in U∗ when T

is large and the distribution of agents almost random: because the distribution does

not differ from the distribution when m = 0, agents have the same “baseline” utility;

however, those who have more than half of same-type neighbors have a higher utility

level than in the m = 0 case, and the gap is linearly increasing in m.

For low values of T (roughly T ≤ 0.1), the dynamics is governed mainly by the

deterministic part of the logit rule, i.e, the agents’ preferences. For m < 0.3, the

preference for a mixed neighborhood of the agent prevails: locally mixed configurations

are observed and the segregation index is low. The dispersion in the distribution of

neighborhoods’ composition induces a level of mean utility around 0.75, which is just

a bit better than what is obtained with a random allocation of agents (see Fig. 1.6).

For m ≥ 0.3, the asymmetry in the agents’ utility function induces a higher stability

of highly segregated states to which the system converges. These segregated states are

particularly harmful in terms of welfare for m comprised between 0.3 and 0.8. For this

range of value of m, preferences for majority status are high enough for segregation
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to appear, but not high enough for agents to benefit from the stationary segregated

configurations. Therefore, the final outcome is always worse from a welfare point of view

than it is in a random distribution of the agents. This observation clearly points out

the deficiency with respect to social welfare of the location mechanism, which generates

locational externalities.

Figure 1.6: Stationary mean values of the similarity index and of the collective utility as a
function of m, for different level of noise T . The error bars give the standard deviation of the fluctuations
of s∗ and U∗ once the system has reached its stationary phase. The mean value and standard deviation
are computed over 10 periods of the stationary phases (when the fluctuation are important, we use larger
temporal windows).

The next three sections present three different ways of introducing coordination in

the model, in order to explore the robustness of the deficiency of the location mechanism

to the introduction of different coordination mechanisms.

1.3 A partial coordination by a Pigouvian tax

1.3.1 Basic setup

The idea of introducing a partial coordination is to make the moving agents take into

account the whole or a fraction of the externality generated by their move on all the

affected agents, ie her past and potentially new neighbors. A mechanism of this kind can

results from the intervention of a benevolent planner who taxes negative externalities

and rewards positive externalities. To that aim, we introduce a tax which is paid when

the move occurs, and does not affect the utility received in the location itself. The

amount of the tax is proportional to the externality produced by the move. In our

reference case (without coordination), an agent decides to move according solely to the

benefit ∆u she would achieve if she was to move. As a consequence from that move, she

would generate an externality that amounts to ∆U −∆u. The tax to be paid by this
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agent when moving is therefore:

τ = α(∆U −∆u) (1.10)

where 0 ≤ α ≤ 1 is a parameter controlling the tax level, the limit case α = 0 corre-

sponding to the without coordination case and the limit case α = 1 corresponding to a

’Global Coordination’ case where only the collective utility is taken into account.

1.3.2 Dynamic rule

The probability that a move happens depends then on the differential of utility enjoyed

by the agent in the initial location and destination and the tax she has to pay, as follows:

Pr{move;PT} =
1

1 + e−[∆u+α(∆U−∆u)]/T
(1.11)

where PT stands for “Pigouvian tax”.

From an analytical point of view, these changes clearly do not affect the main prop-

erty of the Markov chain theory: there exists one unique stationary distribution and

hence the independence of the final configurations on the initial ones is still valid. For

α = 1, the probability to move involves only the global function U . The stationary

distribution can therefore be written as (see Grauwin et al., 2009a):

ΠPT,α=1(x) =
eU(x)/T∑
z∈X e

U(z)/T
(1.12)

It is then easy to figure out that the configurations obtained in the limit T → 0 are

those which maximize the collective utility.

For other values of α, it is possible to find an analytical expression of the stationary

distribution in the context of bounded neighborhoods (see Grauwin et al., 2009a, 2011).

For continuous neighborhoods, an analytical approach is no longer possible. The reason

can be stated quite simply: in the bounded neighborhood case, the information used to

calculate the utility difference achieved by the moving agent (the initial and final neigh-

borhood compositions) allows to calculate the difference in collective utility produced by

the move. This is because the agent’s initial neighbors share the same neighborhood as

her, and their utility difference can therefore be calculated, the same being true for the

final neighbors. Instead, in the continuous neighborhood case, the global utility differ-

ence depends on the neighbors of the neighbors of the moving agent. Indeed, the utility

difference felt by the neighbors of the moving agent depends on their own neighbors,
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most of which are not neighbors of the moving agent. Lacking the analytical approach,

one needs to turn to simulations in order to investigate the effects of the introduction

of partial coordination.

1.3.3 Simulations

We present on Figs. 1.7 and 1.8 snapshots of typical stationary configurations along with

the corresponding values of s∗ and U∗ for different values of α and m, with T = 0.1.

As previously stated, the case α = 0 corresponds exactly to the without-coordination

case that we already commented on in the previous section. With α = 1, adding

coordination to the m = 0 case shifts the random configuration to an ordered one:

enhancing the utility level is possible only by achieving s = 0.5 in every location. In

this case, even if a tax does not affect the value of the similarity index, it allows to

enhance welfare by clustering vacancies, thus diminishing the number of agents that

do not have s = 0.5 exactly. Obviously, for high values of m, due to the form of the

agents’ utility function, a high utility level is obtained whatever the tax level. Still, the

similarity index is lower when coordination is introduced: changing α from 0.5 to 0.8

and then to 1 decreases s∗. For intermediate values of m, that have been identified as

situations where equilibrium leads to harmful segregation in the without-coordination

case, increasing α breaks segregation patterns.

Economic theory predicts that optimality (here a collective utility of 1) is obtained

if a tax equal to the generated externalities is implemented. For α = 1, this is what

would be obtained in the limit T = 0. Here, the collective utility is slightly inferior to

1 because of the finite value of the noise (T = 0.1).4 More interesting, our simulations

show that a low level of taxation is able to significantly increase welfare: Fig. 1.8 shows

that even a tax equal to one fifth of the generated externalities is enough to change the

segregation level and to increase utility for 0.4 ≤ m ≤ 0.7.

An explanation for this result relies on an informal comparison of individual’s and her

neighbors’ utility variations. From the segregation viewpoint, harmful individual moves

are those in which an agent changes neighborhood to follow her taste for majority, for

instance leaving a 40%-60% neighborhood for a 60%-40% neighborhood. The utility

gain allowed by these moves are rather low. Still, those moves drive neighborhoods out

of mixed situations and create avalanches of further moves that will end in segregated

states. When their neighborhood composition changes by one individual, the variation of

utility of each affected agent is of the order of 2/H for agents in minority and 2(1−m)/H

4Having a strictly positive temperature is however necessary to avoid blocked states.
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Figure 1.7: Snapshots of typical stationary configurations of the city for different values of α
and m. The introduction of partial coordination can destabilize the highly segregated configurations
and leads to configurations which present structured mixed patterns. T = 0.1 and H = 8.

for agents in majority in their neighborhood. As the utility gain for the agent is low

compared to the externality affecting the other agents, internalizing even only a part of

the externality with a tax on moves can be enough to hinder those individual moves that

yield a small utility gain for the agent while increasing segregation trends and creating

avalanches of segregating moves. In other words, the tax brakes the cumulative effects

engendered by individual moves.

1.4 A local coordination by a feasible tax

1.4.1 Basic setup

A Pigouvian tax such as the one presented in the previous section supposes that the

virtual central government has a precise knowledge of the neighborhood composition of

each moving agent in order to tax all the moves, which is a rather utopian assumption.

We propose in this section a new variation of the Schelling model incorporating a differ-
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Figure 1.8: Stationary mean values of the similarity index and of the collective utility as
a function of m, for different tax level α, with the partial coordination dynamic rule. The error bars
give the standard deviation of the fluctuations of s∗ and U∗ once the system has reached its stationary
phase. The mean value and standard deviation are computed over 10 periods of the stationary phases.
T = 0.1 and H = 8.

ent tax rule, based on more realistic assumptions regarding the government intervention

ability.

We define the local district of an agent as the Hg nearest cells surrounding him. We

then introduce s
Hg

i , the fraction of similar agents present in the local district of agent

i. The size Hg ≥ H of the district takes into account in a stylized way the central

government’s lack of precision in the knowledge of the agents’ locations. It is also

the scale on which the central government can act to limit unwanted phenomena such

as segregation. We propose here a simple tax definition, which aims at preventing the

emergence or maintenance of a dominant group in each district. The central government

imposes a tax on an agent i, which is defined as:

ri(s
Hg

i , θ) =

{
θ|sHg

i − 0.5| if s
Hg

i > 0.5

0 otherwise
(1.13)

where θ is a fixed parameter controlling the tax level. Note that the tax does not penalize

agents which are in the minority group inside their own district. The tax is payed by

every agent belonging to the majority in the district. The utility of an agent is then

redefined as:

ûm(si, s
Hg

i , θ) = um(si)− ri(s
Hg

i , θ) (1.14)

this new definition taking into account the penalty imposed by the tax.
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Figure 1.9: Snapshots of typical stationary configurations of the city for different values of
Hg, θ and m. The introduction of tax proportional to the level of segregation at the district level can
destabilize the highly segregated configurations and leads to configurations which present structured
mixed patterns. T = 0.1 and H = 8.

1.4.2 Dynamic rule

As in the WC reference case, an agent decides to move according solely to the benefit in

utility he would achieve if he was to move. The only difference here is that her utility

incorporates the tax imposed by our virtual central government. We thus write the

probability that a move happens as:

Pr{move;FT} =
1

1 + e−∆û/T
(1.15)

where FT stands for “feasible tax”.

From an analytical point of view, the properties of the WC model resulting from the

Markov chain theory remain unchanged: there exists one unique stationary distribution

and the final configurations do not depend on the initial ones.

Taking θ = 0 cancels the tax mechanism and the FT rule comes back to the WC

rule. For θ > 0, we expect that a rise in θ implies a rise in the probability of having

non-segregated configurations in the stationary states.

As to the influence of the size Hg of the districts, two limits can be looked upon:
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Figure 1.10: Stationary mean values of the similarity index, collective utility and tax as a
function of m, for different district size Hg, with the feasible tax rule. The error bars give the standard
deviation of the fluctuations of s∗ and U∗ once the system has reached its stationary phase. The mean
value and standard deviation are computed over 20 periods of the stationary phases. T = 0.1, H = 8.

• For Hg = H, the fraction s
Hg

i of similar agent in agent i’s district can be identified

with the fraction si of similar neighbors. It is straightforward to notice that an
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agent utility û can thus be rewritten as:

ûm(si, s
Hg

i , θ) = um(si)− ri(si, θ)

=

{
2si − 0 if si ≤ 0.5

2−m− 2(1−m)si − θ|si − 0.5| if si > 0.5

=

{
2si if si ≤ 0.5

2− (m− θ/2)− 2(1− (m− θ/2))si if si > 0.5

= um−θ/2(si) (1.16)

Hence our tax mechanism can be interpreted in this case as a direct control by the

central government of the asymmetric parameter m in the agents’ utility function.

According to the results obtained by simulation in the WC case (see Fig. 1.6), the

asymmetric parameter must be inferior to mc ' 0.3 in order to avoid segregation.

The equivalence stated in Eq 1.16 thus allows us to predict that the minimal tax

level necessary to break segregated patterns is:

θc(m) = 2(m−mc) ' 2m− 0.6 (1.17)

• For Hg = N2, the district corresponds to the whole city, in which we supposed

that the two groups shared the same number of agents. Hence, for all the agents

sHg = 0.5 and r = 0. The tax mechanism has no effect and the outcomes are the

same as in the WC reference case.

1.4.3 Simulations

We present on Fig. 1.9 some typical snapshots of stationary configurations obtained by

simulating our feasible tax mechanism, while the different panels on Fig. 1.10 present the

values of s∗, U∗ and the mean tax paid by the agents. As previously stated, the WC case,

which we take as reference, corresponds both to the θ = 0 case or the Hg = N2 = 400

case. Putting aside for the moment the Hg = 8 case, we observe on Fig. 1.10 that for

a fixed value of m and starting with Hg = 400, decreasing Hg leads almost always to

a decrease in the segregation index, a decrease in the mean tax and an increase in the

mean utility of the agents. The raise in utility compared with the WC case is particularly

strong for intermediate values of m.

We thus show that the chosen tax, even if it differs from the Pigouvian tax, is able to

lessen the segregation mechanism. This tax is governed by two parameters. θ determines

the impact of the deviation from having a majority status in the neighborhood; the
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higher theta, the stronger the incentive to form mixed neighborhood, which explains

the impacts found in the simulations. The impact of m seen in the simulations is

straightforward: it determines the strength of the preference for the majority status

and therefore the segregation level; it also impacts the average tax, as having a strong

preference for the majority status leads agents to move to segregated neighborhoods,

even if they have to pay the tax. More interesting, the simulation results show the

effect of the local neighborhood size, that is, the consequence of the government lack of

precision regarding the measure of segregation and give some hints as to the sufficient

values of Hg to avoid segregation. The smallest Hg, the less segregation there will be.

However, even with Hg = 44, that is five times larger than the neighborhood considered

by the agents, the utility level enjoyed by the agents for intermediate values of m is

improved compared to the WC case.

The snapshots of the final configurations displayed on Fig. 1.9 give more details

as to the city patterns. They show clearly that the tax mechanism produces organized

patterns which are more regular for larger values of m and higher values of θ. The typical

width of these patterns increases with Hg. These patterns ensure that most of the agents

have an equal or higher number of agents of the other group than agents of their own

group, inside their district (ie sHg ≤ 1/2). In the meantime, the segregation index is

always positive, meaning that on average an agent still has more similar neighbors than

dissimilar ones.

In the Hg = H = 8 case, no clear pattern is visible on Fig. 1.9, but s∗ < 0, that is,

an agent has on average more dislike neighbors than similar ones. The case Hg = H is

special because there is a direct competition between the ’standard effect’ of Schelling

model which favours values of sH greater than 0.5 and the tax mechanism which favours

values of sHg below 0.5. The results obtained for Hg = H = 8 corresponds to what

we stated above based on the transformed utility function: for m ≥ mc + θ/2, the

segregation patterns that exist in the WC case vanish.

1.5 A local coordination by voting

1.5.1 Basic setup

We define the co-proprietors of an agent as the agents living on the h nearest cells

surrounding him. Here, h is a fixed integer which verifies h ≤ H. Co-proprietors repre-

sent in a stylized way next-door neighbors or the people living in the same residential

building whereas the neighbors represent the people living in the same street or in the

same district. Examples of possible forms of neighborhoods and co-properties are shown



CHAPTER 1. SCHELLING’S MODEL WITH LOCAL COORDINATION 43

below in Fig 1.11.

Figure 1.11: Examples of neighborhood and co-property used in our simulations. A red
agent is located on the central cell. His co-property corresponds to the orange cells and his neighborhood
to the orange and white cells. From the left to the right, (H = 8, h = 4), (H = 24, h = 4) and
(H = 44, h = 4).

We introduce local coordination by taking into account the potential change of util-

ity of the co-proprietors of the vacant cell considered by the potential mover. In the

following, we will denote by C this set of agents. It seems more logical to introduce

local coordination through the potentially new co-proprietors (who have you take an

admission exam) than through the current co-proprietors (that you can quit on your

free will). For mathematical convenience, we will suppose that the probability that the

move happens can be computed as the product of the probability that the potential

mover would like to move and the probability that the agents of C accept him: the

two events are independent. We propose here one dynamic rule to counterbalance the

wish of the potential mover by the opinion of his potentially new co-proprietors. Other

mechanisms can of course be imagined. The ‘local’ nature of the implied coordination

comes from the fact that only a fraction of the agents who might be affected by the

potential move are consulted: they don’t include previous neighbors and not all the new

ones.

1.5.2 Dynamic rule

The simplest local coordination rule is that the potential mover needs the majority of

the co-proprietors to endorse his moving in. Let ∆ui be the variation of utility of the

co-proprietor i ∈ C if the move was to take place. We write the probability that the

co-proprietor i votes ‘for’ the move:

Pr{i, ‘for’} =
1

1 + e−∆ui/T2
(1.18)

The logit form of this acceptance probability can be justified in the same way as the

logit for the moving agent. The parameter T2 > 0 can then be interpreted as the
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amplitude of a noise that represents in a stylized way the preferences of the co-proprietors

over any characteristics of the potential mover other than and not correlated to the

group he belongs to (marital status, number of children, profession, religion, friendship,

etc...). Since it is related to other factors, the noise affecting the co-proprietors is

different from the noise affecting a moving agent. We moreover argue that since a co-

proprietor deciding whether to accept or not a new neighbor is qualitatively subject to

less characteristics other than the group membership (ie to less noise) than a moving

agent, it is realistic to suppose T2 ≤ T .

The move takes place with a probability:

Pr{move;LC} =
1

1 + e−∆u/T
Y
({ 1

1 + e−∆ui/T2

}
i∈C

)
(1.19)

where Y = 1, 1/2 or 0 if respectively more than half, exactly half or less than half of

the co-proprietors vote ‘for’ the move, and where LC stands for “Local Coordination”.

From an analytical point of view, the introduction of the vote of the co-proprietors

does not change the main property of our system: it can always be described as a Markov

chain, and since T2 > 0, every move still has a non-zero probability to happen. This

ensures the existence of one unique stationary distribution and hence the independence

of the stationary states with regards to the initial starting state.

1.5.3 Simulations

We first present on Fig. 1.12 a typical evolution of the city in the case where the agents

move according to the local coordination rule by consulting before each move h = 4 out

of H = 8 of their potentially new co-proprietors. We limit our investigations by fixing the

noise level T to 0.1. The level of noise attached to the co-proprietors is fixed to T2 = 0.1

in order to be comparable to the chosen value of T and the parameter m of the utility

function is fixed to 0.5. Starting from a highly segregated configuration, we observe

the disaggregation of the two large homogeneous areas into a much less segregated

configuration presenting more local patterns of segregation. This first simulation hence

shows that the introduction of a bit of local coordination can be sufficient to break

undesired segregated patterns and therefore, a fortiori, to prevent segregation to appear

starting from a mixed configuration.

The explanation of why local coordination works is quite simple. It corrects the

default of the WC mechanism by rendering highly segregated configurations less stable

than before since if a red agent goes by mistake into the green area, he will, compared
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to the WC case, encourage a second red agent to join him by his vote. Hence the

formation of nuclei is encouraged by local coordination. A second kind of mechanism to

get out of segregated patterns is the advance of the frontier zone. On the opposite, the

locally mixed patterns are more stable. Indeed, once an integrated pattern is reached,

the co-proprietors tend to prevent the moves which would increase local segregation.

Figure 1.12: The introduction of local coordination destabilizes the highly segregated configurations
and leads to configurations which present locally mixed patterns. Top panel: some snapshots of the
evolution of the city for T2 = 0.1 and h = 4. Bottom panel: evolution with τ of the index of similarity
and of the collective utility, the grey dots on the T2 = 0.1 curves corresponding to the snapshots of the
top panel. T = 0.1 and m = 0.5.

The influence of the parameters T2 and m can be observed on Figs. 1.12 to 1.15. For

high values of T2, the co-proprietors decision whether to accept or not the moving agent

is purely random and the local coordination mechanism has no impact on the dynamics.

Hence on Fig. 1.15 for T2 � 1, the values of s∗ and U∗ are similar to their values in

the WC case. On the contrary, for lower values of T2, the local coordination mechanism

allows to break the segregation patterns, leading to mixed configurations presenting

locally ordered patterns. It happens the more rapidly, the lower the T2 value (see the

bottom panel of Fig. 1.12). Notice on Fig 1.13 that the impact of local coordination in

terms of welfare is more important for intermediate values of m (between 0.2 and 0.8),

precisely the values for which the WC is the most deficient when compared to random

allocations.

The results displayed on the right panel of Fig 1.13 and on Fig 1.15 correspond to
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Figure 1.13: Snapshots of typical stationary configurations obtained with the “qualified
vote” dynamic rule for different values of m and T2. Left panel: the h = 4 new co-proprietors of a
moving agent out of the 2H = 16 agents he potentially affects by moving are consulted. Right panel:
the h = 4 new co-proprietors of a moving agent out of the 2H = 88 agents he affects by moving are
consulted. Noise level: T = 0.1.

simulations where the moving agents consult h = 4 new co-proprietors out of H = 44

of their potentially neighbors. Since the move of an agent can affect at most 2H agents

(neighbors in the departure and arrival locations), the LC mechanism simulated here is

only taking account of h/2H ' 5% of the agents affected by the externalities generated

by the moving agents.5

For T2 ≥ 10−2, the results are comparable to the previous ones: even if the size

of the co-property is relatively less important, the LC mechanism still allows to break

the segregated patterns and lead to locally mixed and ordered patterns. The size H of

an agent’s neighborhood being greater than previously, the typical size of these ordered

patterns is also greater.

For T2 = 10−3 however, one can observe that U∗ is lower than in the T2 = 10−2 case

(Fig 1.13), and that the normalized similarity s∗ is negative for m ≤ 0.9, meaning that

the agents have on average less similar neighbors than dissimilar ones. The correspond-

5However, since some of the potentially new neighbors share almost the same neighborhood than
voting co-proprietors, there are spatial correlations between the H potentially new neighbors. Hence
the LC mechanism takes effectively into account more than h/2H of the affected agents.
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Figure 1.14: Stationary mean values of the similarity index and of the collective utility as
a function of m, for different level of noise T2, with the qualified vote dynamic rule. The error bars give
the standard deviation of the fluctuations of s∗ and U∗ once the system has reached its stationary phase.
The mean value and standard deviation are computed over 10 periods of the stationary phases. The
plots corresponds to a neighborhood size H = 8, a co-properties size h = 4 and a noise level T = 0.1.
The black curve corresponds to ’Without Coordination’ simulations that have been performed using the
same parameters.

ing snapshots of the stationary configurations on Fig 1.15 show that the system ends

in stripe-like globally ordered states. This result can be understood through the notion

of externalities and lack of coordination. Indeed, when h/H � 1, we can separate the

voting co-proprietors whose neighborhood is close to the vacant cell envisaged by the

moving agent and the neighbors living on a further ring. The respective neighborhoods

of these two kind of neighbors are not spatially correlated, which means that the interest

of these two kind of neighbors are clearly different. There are hence three kind of agents

at play: the moving one, the inner ring of new neighbors (to which the voting agents

belong) and all the other affected agents (the outer ring of new neighbors and the former

neighbors). For finite values of T and T2 → 0, the interest of the second group is in fact

the sole taken into account in the LC mechanism. The interest of the potential movers is

therefore practically not taken into account and some utility maximizing moves become

impossible.

1.6 Conclusion

Schelling’s model is characterized by the paradoxical result that, while the dynamics

is governed by agents moving to improve their own utility, their moves lead to highly

segregated configurations in which most of the agents are far from being fully satisfied.

Actually, as already argued by Zhang (2004b) and Pancs & Vriend (2007), individual

preferences for integrated environments may lead to segregated configurations because

location choice by an agent affects her neighbors’ utility. As stated by Zhang (2004b):
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Figure 1.15: Stationary mean values of the similarity index and of the collective utility as
a function of m, for different level of noise T2, with the qualified vote dynamic rule. The error bars give
the standard deviation of the fluctuations of s∗ and U∗ once the system has reached its stationary phase.
The mean value and standard deviation are computed over 10 periods of the stationary phases. The
plots correspond to a neighborhood size H = 44, a co-properties size h = 4 and a noise level T = 0.1.
The black curve corresponds to ’Without Coordination’ simulations that have been performed using the
same parameters.

“although nobody likes complete segregation, the residential pattern is very stable. Only

moving across the color line by a considerable number of agents could disturb the segrega-

tion equilibrium, but nobody has incentive to do so because it causes a loss of [individual]

utility. [...] Segregation is stable not because people like it, but because any individual

who wants to change the situation unilaterally will have to go across the color line, which

may not be the desirable thing to do from the individual’s perspective. The failure of the

system to escape complete segregation is similar to the phenomenon of “coordination

failure” studied by economists in many other contexts. It is the agents’ inability to move

simultaneously that make them stuck in a situation nobody likes...”

We presented extended versions of Schelling-type models incorporating different

kinds of coordination between the agents and examined stationary configurations based

on simulations. We showed in a first mechanism that introducing partial coordination

through a tax on the externality generated by individual moves is sufficient to break the

gap between the agents’ micro-motives and the emergent macro-behavior and therefore

to break undesired segregative patterns. Moreover, we showed that it is not necessary

for the tax to be equal to the externality to reduce segregation significantly. A tax equiv-

alent to one fifth of the externality might well be sufficient. In a second mechanism,

we assumed that the government is able to tax agents based on their majority status

in the neighborhood. This again is a mechanism that allows to decrease segregation.

In a third mechanism, we introduced local coordination through a voting mechanism

which involves only individual decisions and, unlike the tax mechanisms, does not re-

quire the intervention of a benevolent central authority. This model, remaining in the
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“individual decision” spirit of Schelling model, is shown to be sufficient to reach station-

ary configurations with a significantly higher collective utility than the no-coordination

case. We hope that such an individualistic based coordination model can be seen as a

valuable alternative to the coordination models presented in the literature, mostly based

on affirmative action policies (Dokumaci & Sandholm, 2007). We also hope that these

results can shed light on other location externality issues, such as those encountered in

economic geography models / agglomeration phenomena. Indeed, we have shown that

due to cumulative mechanisms occurring in such situations, the tax level that allows

the system to get or stay close to the social optimum are far lower than the level of the

pigouvian tax.

Of course, it has to be noticed that in the first and third coordination mechanisms we

proposed, the introduction of coordination cannot break the segregative pattern without

the agents having a certain preference for mixed neighborhood. Coordination is only a

way to reinforce on the large scale the wishes of the agents on the local scale: if they

are intolerant, segregation will occur, if they are tolerant, integration may occur.

One of the most interesting tracks for future work would certainly be to explore more

thoroughly what drives the agents’ preferences regarding their neighbors’ attributes. In-

deed, in real life preferences regarding mixed environments seem influenced by individual

past experiences as well as social norms. Such an analysis could be done by coupling

Schelling’s model with another model describing the dynamic evolution of preferences.

For example, one could introduce heterogeneity in the agents’ preferences and allow these

preferences to evolve over time, taking into account the individual’s past experiences and

its neighbors’ preferences.
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Chapter 2

Dynamic Models of Residential
Segregation: An Analytic

Solution

2.1 Introduction

Ethnic and immigrant residential segregation is a striking feature of most Western cities.

Extensive views of segregation patterns in the U.S. have been provided recently by Cut-

ler et al. (2008), Iceland & Scopilliti (2008) and Reardon et al. (2008). Cutler et al.

(2008) examine a range of potential determinants of immigrant segregation, including

cultural traits of immigrants and nativist sentiment among U.S. natives. Card et al.

(2008) results on racial segregation for the 1970-2000 period show evidence of tipping-

like behaviors: the rise of the minority share in a neighborhood above a certain threshold

leads to a further decrease in the white population. This analysis is one of the first pro-

viding clear empirical evidence of non linear dynamic aggregate behaviors, as those

predicted by social interaction models. According to these results, whites’ utility in a

neighborhood seems to exhibit a sharp decrease beyond a certain minority share. A

direct link between white attitudes toward minority members and aggregate configura-

tions, as measured by the location of the tipping point, is also shown by the authors.

The theoretical relationship between individual preferences and aggregate configurations

has however not been fully explored to date.

An early contribution was provided by Schelling, who proposed a model aiming at

formalizing the aggregate consequences of individual preferences regarding the social

environment (Schelling, 1969, 1971, 1978). The two basic ingredients of Schelling’s “Dy-
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namic models of segregation” (1971) are an individual utility function that determines

entirely the level of satisfaction enjoyed by an agent in a location and a dynamical rule

that drives agents’ location changes and therefore the evolution of the city configura-

tion. Using an inductive approach, Schelling showed that if the preferences considered

are such that an environment of more than 50% of own-group agents is highly pre-

ferred to a less than 50% of own-group environment, then the equilibrium configuration

exhibits high levels of segregation, although there is no preference for segregation per

se. Schelling 1971 paper is widely known thanks to this apparently paradoxical effect:

mild individual preferences for own-group neighbors lead to a complete segregation at

the global scale. However, a moment of reflection suffices to understand that, given

the highly asymmetrical utility function used in this model, it could hardly lead to an

integrated environment. Yet, later research showed that even a peaked utility function,

that is, a function achieving its maximum for a perfectly mixed environment, can lead

to a fully segregated equilibrium as soon as this function is asymmetric (Zhang, 2004b;

Pancs & Vriend, 2007; Barr & Tassier, 2008).

Criticizing the realism of Schelling model is straightforward: it ignores institutional

causes of segregation, income effects, or cities’ social structure. Anyway, the model has

become a favorite example, in the modelling of social systems, of the unintended macro-

level consequences of individual behavior, and Schelling 1971 paper is his most widely

cited publication (more than 460 as of 2010, June 10th). After years of relatively low

citation records, this paper accrues since 2003 around 40 citations per year, showing the

renewed interest in Schelling model. It is interesting to notice that citations arise from

widely different fields: economics and sociology represent the two strongest contributors

(40% of the total number of citations) but computer science, mathematics and physics

gather 24% of the citations. This substantial scientific activity has lead to new insights:

the interpretation of the emergence of segregation patterns as the result of a coordina-

tion problem (Zhang, 2004a,b); a physical analogue of Schelling’s model (Vinkovic and

Kirman, 2006); the robustness of Schelling’s results with respect to different definitions

of individual utilities and/or environment (Pancs & Vriend, 2007; Fagiolo et al., 2007);

the impact of heterogeneous agents and public policies (O’Sullivan, 2009); the explo-

ration of tipping behaviors (Zhang, 2010).1 Most of this work relies on agent-based

simulations.

Attempts to solve Schelling model analytically include Dokumaci & Sandholm (2007);

Mobius & Rosenblat (2000); Pollicott & Weiss (2001); Pancs & Vriend (2007); Zhang

(2004a,b, 2010). Zhang (2004a,b, 2010)’s contributions represent to date the closest

1See Clark & Fossett (2008) for a literature review.
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achievement in this direction. Zhang proposes variations of Schelling model which he

analyzes formally using the concept of potential function developed in evolutionary game

theory. Zhang (2004a) considers a model with vacant cells and linear utility functions.

Zhang (2004b, 2010) use an asymmetrically peaked utility function in a model with no

vacant cells. The latter choice raises the issue of individual rationality, as it is assumed

that, for individual moves to occur, two agents have to coordinate and agree on ex-

changing locations. As such, this analysis departs from Schelling original framework.

Furthermore, these three contributions only cover two specific utility functions.

In the present chapter, we build on Zhang (2004a,b, 2010). We place Schelling model

in the context of evolutionary game theory aiming at characterizing the equilibrium

segregation level by means of a potential function. Compared to Zhang (2004b, 2010),

we consider bounded neighborhoods, ie blocks where all the agents share the same

neighbors. This permits us to formalize the externalities for a relatively broad range

of utility functions. In this context, we can predict the global pattern emerging from

different utility functions, which, to the best of our knowledge, was never done before.

We show that a potential function of the model exists if and only if the utility functions

are such that the externalities generated by one type of agents are symmetric to the

ones generated by the other type of agents. Under this condition, a general form of

the potential function is found. The main property of this potential function is that

it reflects both the macro and micro scale. On one hand, this aggregate function only

depends on the number of agents of each type in each block. On the other hand, it keeps

tracks of the individual level since it corresponds to a sum of individual utility changes

generated by individual moves.

We use this potential function to characterize the segregation level of the stationary

configurations of the model for different utility functions, representing different degrees

of preference for mixed environments. We examine successively (i) linear utility func-

tions, with a continuous preference for segregated environments, (ii) Schelling’s original

utility function in which there is a mild preference for a mixed environment and (iii)

asymmetrically peaked utility functions, according to which agents clearly exhibit a pref-

erence for a mixed environment. We show that there is no divergence between individual

moves and social welfare with increasing linear utility functions, although segregation

prevails in stationary configurations. We also show that even with the strongest prefer-

ence for mixed environments - in the asymmetrically peaked utility function case - the

model yields segregated stationary configurations. This case is also the one in which the

divergence between the stationary segregation level and the optimal segregation level is

the highest. These results complement those obtained by Zhang (2004b, 2010) based on
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more restrictive hypotheses. Compared to this previous work, our analysis presents the

advantage of remaining in Schelling’s spirit by including vacant cells. While the condi-

tion on the utility functions for a potential function to exist with vacant cells restrict

somewhat the range of utility functions that can be considered, all utility functions are

valid in the limit case with no vacant cells.

In summary, our work provides a very general solution to Schelling’s model with

bounded neighborhoods, that encompasses previous work on this model and that paves

the way to the analysis of many structures of preferences, for instance those based on

empirical findings concerning racial preferences. In addition, a few simulation results

are shown for illustrative purpose.

This chapter is organized as follows. The model features are presented in section

2.2. Section 2.3 defines the potential function concept and states our main result. The

potential function is then used in section 2.4 to study the stationary configurations

obtained for three different utility functions. In one of these cases, we are able to build

a connection with a commonly used segregation measure. In section 2.5, we demonstrate

the supplementary result that a potential function exists with continuous neighborhoods

if and only if the utility functions are linear and discuss the differences between the

bounded and continuous neighborhood cases. We also draw a parallel with general

concepts of coalitional games, consider preferences of the agents for local amenities and

analyse a case where a taxation is introduced against segregative behaviors.

2.2 A general dynamic model of segregation

2.2.1 The city and the agents

Our artificial city is a two-dimensional NxN square lattice with periodic boundary

conditions, ie a torus containing N2 cells. Each cell corresponds to a dwelling unit, all

of equal quality. We suppose that a certain characteristic divides the population of this

city into two groups of households that we will refer to as red and green agents. Each

location may thus be occupied by a red agent, a green agent, or may be vacant. We

denote by NV the number of vacant cells, and by NR and NG the number of respectively

red and green agents. The parameter N thus controls the size of the city, the parameter

v = NV /N
2 its vacancy rate, and the fraction nR = NR/(NR +NG) its composition.

We define a state x of the city as a N2-vector, each element of this vector labelling

a cell of the NxN lattice. Each state x thus represents a specific configuration of the

city. We note X the set of all possible configurations, the demographic parameters (N ,

v, nR) being fixed.
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2.2.2 Neighborhoods

Since Schelling (1969)’s work, two ways of conceiving the neighborhood of an agent have

been developed and used in analytical and simulation models.

Bounded neighborhood models (Fig 2.1a) describe cities divided into geographical

units within which all agents are connected. The neighborhood of an agent is thus

composed entirely and exclusively of the locations present in the same geographical

unit as his own. In the following, when we refer to a bounded neighborhood model,

we will implicitly assume that the city is divided in a set Q of blocks, each of which

contains H + 1 locations, where H is a fixed integer that corresponds to the number of

locations in an agent’s neighborhood (hence, the relation |Q|(H + 1) = N2 must hold).

Obviously, the description of the city as a lattice with periodic boundary conditions is

unnecessary in this case. Note that since some locations remain empty, the size H of the

neighborhood of an agent can also be interpreted as the maximum number of neighbors

an agent can have. For a given configuration x ∈ X of the city, we denote by Rq(x) and

Gq(x) the number of red and green agents that live inside the block q ∈ Q. Taking into

account that some locations of each block may remain empty, the {Rq} and the {Gq}
must thus verify :

∑
q Rq = NR (2.1)∑
q Gq = NG (2.2)

(Rq, Gq) ∈ EH+1 ≡ {(R,G), 0 ≤ R+G ≤ H + 1} (2.3)

Figure 2.1: Different forms of neighborhood. Red, green and white squares denote respectively
red agents, green agents and vacant cells. a. Example of a bounded neighborhood in which the city
is divided in square blocks containing H + 1 = 25 cells/locations; b. In the case of a continuous
neighborhood description, the neighborhood of an agent corresponds to his H nearest cells/locations.
Around the agents marked in yellow, we enlightened by the white frontiers a H = 4, a H = 8, a H = 24
and a H = 44 continuous neighborhood. [If you printed this document in black and white, the red and
green squares should appear respectively in dark grey and soft grey.]
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Continuous neighborhood models (Fig 2.1b) describe cities where the neighborhoods

do not correspond to a zoning at the city level, but are centered on the local perception

of each agent. In a continuous neighborhood description, one assumes that the neighbor-

hood of an agent is composed of the H nearest locations surrounding him. The H = 4

“Von Neumann neighborhood” and the H = 8 “Moore neighborhood” that are dis-

played among other examples on Fig 2.1.b are the most commonly used in agent-based

computational models.

As will be demonstrated in section 2.5.1, a potential function exists in the continuous

neighborhood case only with very specific utility functions. In the following, we place

ourselves, unless otherwise mentioned, in a bounded neighborhood case that allows us to

consider a relatively broad range of utility functions. There is actually no argument in

favor of bounded or continuous neighborhoods as far as the realism of the assumptions

is concerned. Bounded neighborhoods can be thought of as reproducing the effects

of the administrative divisions of real cities such as census areas or school districts.

Still, bounded neighorhoods present the drawback that the spatial arrangement of the

neighborhoods is not taken into account: each neighborhood is considered independently

without any connection to other neighborhoods. This is the checkerboard issue, well

known in the literature on residential segregation measures. We present in section 2.5.1

some simulation results illustrating the impact of the neighborhood description on the

forms of segregation at the city scale and a formal analysis showing how connections

between neighborhoods, that make agents close to neighborhoods boundary also consider

the composition of the contiguous neighborhood, can be introduced in our framework.

2.2.3 Agent’s utility function

Each agent has a utility level which depends only on his neighborhood composition. Let

us consider an agent whose neighborhood is composed of R red agents, G green agents

and V vacant cells. Since R + G + V = H, one needs two independent parameters to

describe the composition of the agent’s neighborhood. In all generality, we can thus

write the utility of an agent for example as a function of R and G. Like most models of

the literature, we assume for simplification that agents of a same group share the same

utility function.2

2See O’Sullivan (2009) for a treatment with heterogeneous agents.
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Without any loss of generality, we write the utility of an agent as:

u = uR(R,G) for a red agent with R red and G green neighbors,

u = uG(R,G) for a green agent with R red and G green neighbors.

The utility of an agent is thus a function of EH → R. More specifically in the case

of a bounded neighborhood description, we will have :

u = uR(Rq − 1, Gq) for a red agent living in block q,

u = uG(Rq, Gq − 1) for a green agent living in block q.

In order to facilitate the comparison of different utility functions, utility in the exam-

ples presented below is such that a zero utility level denotes a complete dissatisfaction

of the agent and a utility of one denotes complete satisfaction.

We also introduce a notation in order to characterize the level of utility on the global

(city) scale:

U(x) =
∑
k

uk (2.4)

where uk is the utility of agent k and U(x) denote the collective utility of a configuration

x.

2.2.4 A behavioral rule: the logit dynamical rule

The core of dynamic segregation models is that agents are given opportunities to move

to increase their individual utility. Once the static description of the model is specified,

one must add a dynamic rule that governs these moves. In the following, the city

configuration evolves according to an iterative process. At the first iteration, an initial

configuration is randomly chosen. At each iteration, one agent and one vacant cell are

picked at random.3 The picked agent then chooses to move to that vacant cell with a

probability Pr{move} that depends on the utility gain ∆u he would achieve if he was

to move, as follows:

Pr{move} =
1

1 + e−∆u/T
(2.5)

where T > 0 is a fixed parameter.

3Instead of assuming, as Schelling did, that the agents move to the nearest satisfactory position (the
idea being that the cost of moving increases with distance), we suppose here that the distance between
the current and envisaged locations of an agent does not intervene in his decision whether to move or
not.
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Eq. 2.5 represents a logit choice function as developed in McFadden (1974) as the

outcome of a random-utility model. In such a model, it may happen that an agent

takes a utility-decreasing move, either because he is making a mistake or because of a

lack of information. The scalar T is used to determine the relative importance of the

random part with respect to the deterministic part of the random utility function. The

probability for an agent to take a utility-decreasing move drops down as T → 0 and

the described rule thus converges to the non-strict best response rule. For any finite

T > 0, the agents choose non-best replies with a non-zero probability, but actions that

yield smaller payoffs are chosen with smaller probability. This kind of perturbed best-

response dynamics has been developed in Young (1998) in the context of evolutionary

games. Here, neighborhood’s composition is supposed to be the main determinant of

agents’ actions : we restrict our analysis to the case of low values of T .

Compared to a best-response behavioral rule (where the agents move if and only if

they strictly improve their utility), the logit rule allows for some fluidity in the model

in the sense that blocked states are avoided (Vinkovic and Kirman, 2006). Besides, it

provides a strong analytical framework to Schelling model. Obviously, it implies that

the probability that the state at the tth iteration xt is equal to a given state x only

depends on the state at the previous iteration xt−1:

Pr(xt = x|xt−1, . . . , x1, x0) = Pr(xt = x|xt−1) (2.6)

The dynamic rule thus yields a finite Markov process.

It is then easy to figure out that the Markov chain describing our system is irreducible

(since T > 0 each imaginable move has a non-zero probability to happen and it is thus

possible to get to any state from any state), aperiodic (given any state x and any integer

k, there is a non-zero probability that we return to state x in a multiple of k iterations)

and recurrent (given that we start in state x, the probability that we will never return

to x is 0). These three properties ensure that the probability to observe any state x

after t iterations starting from a state y converges toward a fixed limit independent of

the starting state y as t→∞.

In other words, for each set of parameters and dynamic rule, there exists a stationary

distribution

Π : x ∈ X → Π(x) ∈ [0, 1] ,
∑
x∈X

Π(x) = 1 (2.7)

which gives the probability with which each state x will be observed in the long run.

Clearly, for T → ∞, the randomness introduced in the dynamical rule prevails and
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the stationary distribution is just a constant. Similarly, for any finite T > 0, our

dynamical system (the city) evolves toward an attractor composed of a subset A of X.

It follows that any measure M - such as the global utility U - performed on the state

space X will in the long run fluctuate around a mean value M∞ =
∑

x∈A Π(x)M(x).

These mean values may depend on the intensity of the noise T , but the amplitude of

the fluctuations decreases as T → 0.

In the following, we refer to two states x and y as immediately communicating states

(ICS) if we can switch from state x to state y by moving one single agent. We also

note ∆xyu the variation of utility of this agent induced by this particular move and P Txy

the probability to be in state y at a given iteration if the system was in state x at the

previous iteration. According to the dynamic rule presented above, one has:

P Txy = γ(1 + e−∆xyu/T )−1 if x and y are ICS (2.8)

P Txy = 0 if x and y are not ICS (2.9)

where the parameter γ = 1/(NV (NR + NG)) = 1/(v(1 − v)N4) takes into account the

probability to pick the right agent and the right vacant cell that allow to pass from x

to y. P T thus corresponds to the probability transition matrix for a fixed T and the

stationary distribution Π is by definition the unique normalized function defined on X

that verifies for all x ∈ X: ∑
y

P TyxΠ(y) = Π(x) (2.10)

2.3 Model solving with a potential function

2.3.1 Definitions and properties

Following Zhang (2004a,b), we place our model in the context of evolutionary game

theory and use the concept of potential function to solve it. In game theory, the concept

of potential function was proposed by Monderer & Shapley (1996). A game is said

to be a potential game if the incentive of all players to choose their strategy can be

expressed in one global function, which is called the potential function. In our context,

the definition of a potential function takes the rather simple following form:

Definition 1. Let F : x ∈ X → F(x) ∈ R be an aggregate function describing each

of the potential configurations. By definition, F will be a (cardinal) potential function

of our model if and only if each gain in utility ∆u of a moving agent is equal to the
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variation ∆F that is induced on the global level by the move of this agent.4 A cardinal

potential function will thus verify: F(y) − F(x) = ∆xyu with ∆xyu previously defined

(section 2.2.4).

The main property of a potential function is to link the variation of a purely indi-

vidual function (the utility of the moving agent) to the variation of a global function

defined on the space X of all possible configurations and characterizing the city config-

uration. The ensuing lemma points out even more the value of the potential function as

an analytical tool.

Lemma 1

If F is a potential function of the system, then the stationary distribution Π is such

that for any configuration x:

Π(x) =
eF(x)/T∑
z∈X e

F(z)/T
(2.11)

It follows that for T → 0, the stationary configurations are those that maximize F .

Proof. The following proof follows the classical argument presented in Young (1998).

Let π be the function defined as π : X → [0, 1]; x → π(x) = eF(x)/T /
∑

z e
F(z)/T .

The first step of the proof consists in checking that π satisfies the detailed balance

condition:

π(x)P Txy = π(y)P Tyx (2.12)

If x and y are two different and not communicating states, equality 2.12 is trivially

satisfied since in this case P Txy = P Tyx = 0. If x = y, the detailed balance condition is also

trivially verified. In the case where x 6= y and x and y are two communicating states,

one has:

π(x)P Txy = π(x)γ
1

1 + e−∆xyu/T
= π(x)γ

1

1 + e−(F(y)−F(x))/T
= π(x)γ

eF(y)/T

eF(x)/T + eF(y)/T

= π(y)γ
eF(x)/T

eF(x)/T + eF(y)/T
= π(y)γ

1

1 + e−(F(x)−F(y))/T
= π(y)γ

1

1 + e−∆yxu/T

= π(y)P Tyx

4Games can be either ordinal or cardinal potential games. In cardinal games, the difference in
individual payoffs for each player from individually choosing one’s strategy ceteris paribus has to have
the same value as the corresponding difference in value for the potential function. In ordinal games,
only the signs of the differences have to be the same.
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recalling that γ = 1/(NV (NR +NG)) = 1/(v(1− v)N4).

Hence the detailed balance condition is always verified and∑
x∈X

π(x)P Txy =
∑
x∈X

π(y)P Tyx = π(y)
∑
x∈X

P Tyx = π(y) · 1 = π(y) , (2.13)

which defines π as a stationary distribution of the process. Because the Markov chain

is finite and irreducible, it has a unique stationary distribution. Hence, for each state

x, Π(x) = π(x) = eF(x)/T /
∑

z e
F(z)/T .

Define then XF as the subset of X of the states that maximize the potential function

F :

XF = {y, ∀x ∈ X F(y) ≥ F(x)} (2.14)

The second part of the lemma can now be proved as follows: for two states x and y

of XF , we will have F(x) = F(y) and therefore Π(x)/Π(y) = e[F(x)−F(y)]/T = 1, which

means that two states that strictly maximize F are observed in the long run with the

same probability; for two states x ∈ X \XF and y ∈ XF , we will have F(x)−F(y) ≤ 0

and therefore Π(x)/Π(y) = e[F(x)−F(y)]/T → 0 as T → 0. This means that for T → 0,

the probability to observe a state that does not maximize the potential function F
becomes in the long run infinitesimally small. �

The potential function is hence a very powerful analytical tool. First, it establishes

a relation between individual changes in utility and a global characteristic of the city

configuration. Second, because stationary configurations can be defined as those maxi-

mizing the potential function for low noise levels, the existence of a potential function

allows to qualify analytically stationary configurations. The fact that the knowledge of

∆u is sufficient to say something on the global level is highly non-trivial since, in partic-

ular, there is no way to determine the externalities produced by the move of an agent -

ie the variation of the utility of his former and new neighbors - only from the knowledge

of the utility variation of the moving agent. Note that a low level of T is required for the

maximum of the potential function to be achieved at stationary configurations.5 Still,

T has to remain strictly positive to avoid blocked states.

5In the case of finite values of the noise level (T > 0), it can be demonstrated using standard tools
of statistical physics that the states which are the more probable to appear are those which maximize
F (x) + TS(x) where S(x) is an entropy-like global function taking into account the number of ways of
locating Rq red agents and Gq green agents in each block q of the city (Grauwin et al., 2009a).
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2.3.2 Main result: existence of a potential function

It is possible, using the potential function, to examine analytically the outcome of the

model for different utility functions, representing different degrees of preference for mixed

environments. To do so, two questions are to be answered first: given any pair of utility

functions (uR, uG), does a potential function exist and can we compute it? Reciprocally,

given a potential function, can we find a pair of utility functions (uR, uG) that can be

translated into this specific potential function?

We show in the following that in the context of bounded neighborhoods, one can

achieve an analytical resolution of the model under a rather mild condition. Let us begin

with some definitions.

Definition 2. Let U be the set of pairs of utility functions (uR, uG) that verify, for all

(R,G) ∈ EH , the following condition:

uR(R,G)− uR(R,G+ 1) = uG(R,G)− uG(R+ 1, G) (2.15)

Condition 2.15 only imposes that if a block contains R + 1 red agents and G + 1

green agents, the utility gain a red agent would achieve if a green agent left must be

the same as the utility gain a green agent would achieve if a red agent left. The results

in the following apply to pairs of utility functions verifying this condition. As we show

below, this condition is not strongly restrictive from a theoretical viewpoint.

Definition 3. Let F be the set of aggregate functions of the form F(x) =
∑

q∈Q F (Rq, Gq),

where F is an intermediate function defined on the set EH+1 of all possible numbers of

red and green agents that can be present in a block.

The main result of this chapter consists in the following proposition:

Proposition 1



CHAPTER 2. AN ANALYTIC SOLUTION 63

Each aggregate function F ∈ F : x → F(x) =
∑

q∈Q F (Rq, Gq) is a potential function

to which corresponds at leasta one pair (uR, uG) of utility functions of U that can be

expressed as: {
uR(R,G) = F (R+ 1, G)− F (R,G)

uG(R,G) = F (R,G+ 1)− F (R,G)
(2.16)

Reciprocally, for each pair of utility functions (uR, uG) of U, there exists one corre-

sponding potential function F[uR,uG] ∈ F. This function can be expressed through the

functional FuR,uG : EH+1 → R - such that F[uR,uG](x) =
∑

q∈Q F[uR,uG](Rq, Gq) - which

is defined for all (R,G) ∈ EH+1 by:b

F[uR,uG](R,G) =
R∑
r=1

uR(r − 1, 0) +
G∑
g=1

uG(R, g − 1) (2.17)

=
R∑
r=1

uR(r − 1, G) +
G∑
g=1

uG(0, g − 1) (2.18)

aSince the definition of the potential function makes only intervene its variation, F can be defined
up to an additive constant. Similarly, a utility function can also be defined up to a constant. All the
formula in this insert are written with the convention u(0, 0) = F (0, 0) = F (0, 1) = F (1, 0) = 0. For
more details, see the proof in A.1.

bOur notation assumes that a sum is null whenever its upper bound of summation is inferior to its
lower bound of summation.

Proof. See Appendix A.1. �

Proposition 1 states that it is always possible to define a function F defined at

the neighborhood level corresponding to the variation of utility of a moving agent, but

only a pair of utility functions verifying condition 2.15 allows this function to be path-

independent and therefore uniquely defined for any given configuration. Reciprocally,

for any pair of utility functions verifying condition 2.15, the game has a potential func-

tion that is maximized at stationary configurations, and this function is the sum of

neighborhood-level intermediate components. As Eq 2.17 shows, the intermediate com-

ponent of the potential function corresponds to the sum of utilities of the agents arriving

in succession in the block. This sum is calculated starting from an empty block, agents

being introduced one by one, first the red ones and then the green ones. As Eq 2.18

shows, the same sum is obtained if green agents are introduced first and red agents

after. Before giving a more general interpretation in section 2.3.3, it is useful to give

the following corollary, aimed at showing that utility functions verifying condition 2.15

can be given a convenient formulation in which interactions between the two groups are
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expressed through the same function in the two utility functions, thus giving a more

general formulation for the potential function.

Corollary 1

Any pair of utility functions (uR, uG) belonging to U can be written:

uR(R,G) = ξR(R) +
G−1∑
g=0

ξ(R, g) (2.19)

uG(R,G) = ξG(G) +

R−1∑
r=0

ξ(r,G) (2.20)

where ξR and ξG are arbitrary functions of {0, 1, ..,H} → R and ξ is an arbitrary function

of EH → R.

For each pair of utility functions (uR, uG) verifying 2.19 and 2.20, thanks to Eq. 2.17,

one can rewrite the general form of the potential function F[uR,uG] as:

F(x) = const+
∑
q

(Rq−1∑
r=0

ξR(r) +

Gq−1∑
g=0

ξG(g) +

Rq−1∑
r=0

Gq−1∑
g=0

ξ(r, g)
)

(2.21)

Proof. For any pairs of utility functions (uR, uG), one can define ξR and ξG, two

functions of {0, 1, ..,H} → R and ξRG and ξGR, two functions of EH → R by{
ξR(r) = uR(r, 0)

ξG(g) = uG(0, g)

{
ξRG(r, g) = uR(r, g + 1)− uR(r, g)

ξGR(r, g) = uG(r + 1, g)− uG(r, g)

for all 0 ≤ r ≤ H and 0 ≤ g ≤ H. By definition, one can then write the utility

functions as

uR(R,G) = ξR(R) +

G−1∑
g=0

ξRG(R, g) (2.22)

uG(R,G) = ξG(G) +

R−1∑
r=0

ξGR(r,G) (2.23)

for all (R,G) ∈ EH .

The condition given by Eq. 2.15 is obviously equivalent to ξRG = ξRG ≡ ξ, which

proves Corollary 1.

�
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2.3.3 Interpretation

We propose here first an interpretation of condition 2.15 and then of the form of the

potential function. Proposition 1 ensures that there exists a potential function for any

pair of utility functions verifying condition 2.15. In its original form, this condition says

that there is a symmetry in the externalities generated by green agents on red agents

and by red agents on green agents: starting from a given neighborhood composition,

the variation in utility produced by the departure of an agent of the other type must be

the same for the two categories. This can be seen as rather limiting, as some real world

situations do not conform to this condition. For instance, well-known surveys on the

appreciation by white and black individuals of their preferred residential environment

show that blacks are in favor of integrated neighborhoods, whereas whites favor all-white

neighborhoods (Farley et al., 1978; see Farley et al., 1997 for recent figures).

However, condition 2.15 covers more general types of preferences when the rate of

vacant cells is low. Namely, in the limit of a very low vacancy rate, there is no vacant

cells in most of the blocks, ie in these blocks the relation Rq + Gq = H + 1 holds.

Hence, one only needs one parameter among (Rq, Gq, Vq) to define a utility function and

considering for instance that an agent’s utility only depends on his number of similar

neighbors is sufficient to describe all possible cases. This can be done by taking ξ ≡ 0

in Eq. 2.19 and Eq. 2.20, while keeping the functions ξR and ξG independent and free.

In other words, in the limit of no vacant cells, each agent arriving in a neighborhood

receives a utility that is fully determined by the number of like-neighbors. Therefore, the

order in which the agents settle in the neighborhood does not matter and the condition

for having a potential function holds. The set U hence describes all possible pairs of

utility functions in the limit v → 0. It follows also that condition 2.15 holds for all

pairs of utility functions in situations where vacant cells are considered in the same way

as unlike-color neighbors. Note also that condition 2.15 applies to the utility functions

considered in Zhang (2004a), where preferences over neighborhoods are determined by

the number of like-agents only and the symmetric effect of unlike-color neighbors on each

type of agent emerges as the result of the determination of housing prices by densities.

In its original form, the potential function F can be interpreted as the sum of the

incentives the agents had (when they settled) to move into the neighborhood where they

are located. Indeed, if x(t) denotes the state of the city at iteration t, then the potential

can be rewritten as

F(x(t))−F(x(0)) =
t∑

t′=1

∆x(t′−1)x(t′)u (2.24)
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where ∆x(t′−1)x(t′)u = 0 by definition if no move happens at iteration t′ and where we

can take F(x(0)) = 0 since the potential is defined up to a constant. Conversely, the

potential function F can also be viewed as the minimum utility level each agent would

require to accept quitting his neighborhood. As such, it represents, in the case T → 0,

the stability of the configuration x: the higher the potential function, the smaller the

incentives for agents to move.

To interpret further the potential function, it is worth noting that condition 2.15 can

also be written as follows:

uR(R,G) + uG(R+ 1, G) = uG(R,G) + uR(R,G+ 1) (2.25)

which means that starting from any initial composition of a block, the sum of utilities

of a red agent and a green agent entering successively in this block is the same whatever

the order in which they enter. This expression stresses that, under condition 2.15, the

value of function F in a given neighborhood q does not depend on the particular path of

events that lead to the composition of this neighborhood. This is also particularly clear

in the form of condition 2.15 given in corollary 1. It hence follows that the potential

function F , which is the sum of the F intermediate functions, is independent of the

particular order in which the agents arrived in the neighborhoods.

Hence it is also possible to define F as the average over all the possible ways of

ordering the agents, which will be shown formally in section 2.5.2.

2.4 Segregation for different levels of preference for mixed

environments

The main property of the potential function obtained in the previous section is that

it reflects both the macro and micro scale. On one hand, F is an aggregate function

defined at the city level which only depends on the number Rq and Gq of red and green

agents in each block. On the other hand, F also keeps tracks of the individual level

since it corresponds to a sum of the utility differences generated by individual moves.

When the stationary states are reached in the case T → 0, F is maximized, which means

that no agent can strictly improve her utility by moving. The potential function can

now be used to assess the outcomes of our location model for different utility functions,

representing different degrees of preference for mixed environments, as far as these func-

tions verify condition 2.15. We examine successively (i) linear utility functions, with a

continuous preference for segregated environments, (ii) Schelling original utility function
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in which there is a mild preference for a mixed environment and (iii) an asymmetrically

peaked utility function, according to which agents exhibit a strict preference for a mixed

environment.6

2.4.1 Linear utility functions

We consider here utility functions that exhibit a monotone effect of the number of same-

color neighbors on utility, through linear utility functions. Zhang (2004a) proposes an

analytical solution of a dynamic model of segregation with a linear utility function and

shows that the halved sum of individual utilities is a potential function of the game thus

defined. In this section, we show that Proposition 1 allows to find similar results for all

linear utility functions verifying condition 2.15 in the context of bounded neighborhoods.

Suppose that uR and uG are expressed as:

uR(R,G) = aR+ bG

uG(R,G) = bR+ dG (2.26)

where a, b, d are constant parameters.7

One can easily verify that this particular pair of utility functions verifies condition

2.15 and compute the corresponding potential function:

F(x) =
1

2

∑
q

(aRq(Rq − 1) + dGq(Gq − 1) + 2bRqGq) (2.27)

One can rewrite this potential function as:

F(x) =
(
b− a+ d

2

)
ρRG(x)− a

2
ρRV (x)− d

2
ρGV (x) (2.28)

with:

ρRG =
∑

q RqGq the number of red-green pairs of neighbors,

ρRV =
∑

q Rq(H + 1−Rq −Gq) the number of red-vacant pairs of neighbors and

ρGV =
∑

q Gq(H + 1−Rq −Gq) the number of green-vacant pairs of neighbors.

This last form provides a convenient interpretation of the potential function. Putting

6Refer to Grauwin et al. (2009b) for the study of other utility functions.
7Zhang (2004a)’s utility function corresponds to b = d = −1 and a ≥ −1, the utility also including a

fixed income term which makes it positive. In Zhang (2004a)’s framework, the impact of unlike neighbors
is not due to preferences, but to the impact of density on housing prices.
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aside at this point the last two terms, F(x) is proportional to ρRG, that gives a measure of

the relative contact between the two groups. Hence, the sign of the prefactor b−(a+d)/2

indicates whether mixed states (when positive) or segregated states (when negative) are

obtained at the global level. Notice that the two groups do not need to both have strong

preferences for like neighbors for segregation to emerge. It is the average preference over

the two groups that determines the level of segregation.

The terms proportional to ρRV and ρGV show that agents avoid the proximity of

vacant cells when a > 0 and d > 0. All these insights gained from the study of the

potential function can be checked by means of simulations (Fig 2.2).

Figure 2.2: Typical stationary configurations obtained by simulations for different values
of (adb). Top panel: for 2b− (a+ d) < 0, the system evolves towards segregated configurations where
red and green agents tends to live in different blocks. Bottom panel: for 2b− (a+ d) > 0, the system
evolves towards mixed configurations where the number of red-green pairs of neighbors is maximized.
From left to right: the sign of a and d controls the tendency of red and green agent to prefer to
live in dense or uncrowded areas. The demographic parameters are (N = 20, v = 10%, nR = 0.5).
Neighborhood size is fixed to H + 1 = 16 and the level of noise is T = 0.1

Turning now to the link between segregation of the stationary configurations and

collective utility, it is useful, using proposition 1, to write the potential function as
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follows:8

F(x) =
1

2

∑
q

(aRq(Rq − 1) + dGq(Gq − 1) + 2bRqGq)

=
1

2

∑
q

(RquR(Rq − 1, Gq) +GquG(Rq, Gq − 1))

=
1

2
U(x)

With this choice of utility functions, the potential function is thus proportional to col-

lective utility and therefore lemma 1 ensures that, for low values of T , the stationary

configuration maximizes collective utility. Reciprocally, one can verify (see proof in A.2)

that if we want the potential function to be proportional to the collective utility, so that

states that maximize the potential function also maximize collective utility, then the

constant of proportionality is necessarily 0.5 and the pair of utility functions must take

the form displayed in Eq. 2.26 (up to a constant).

To sum up, the linear utility functions as defined in 2.26 lead to segregated or mixed

states depending on the values of the parameters. However, in all cases, there is no

divergence between stationary configurations and the optimum: these utility functions

are such that utility-improving moves also improve collective utility.

2.4.2 Schelling utility function

Suppose that the agents compute their utility with Schelling utility function, which is

equal to 1 if their fraction of similar neighbors is superior or equal to 0.5, and equal to

0 otherwise. This utility function can be expressed in terms of the number of red and

green neighbors as follows:

uR(R,G) = Θ(R−G) =
1

2
(1 + |R+ 1−G| − |R−G|)

uG(R,G) = Θ(G−R) =
1

2
(1 + |R− 1−G| − |R−G|) (2.29)

where Θ is the Heaviside function defined by: Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0.

It is easy to figure out that this particular pair of utility functions respects condition

2.15, and is therefore in the set U. Indeed, the form of the symmetric externality

8Note that this result is similar to the one obtained in the continuous neighborhood case as will be
seen in section 2.5.1. See also Grauwin et al. (2009b).
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produced by a new unlike-color neighbor is the following:

uR(R,G+ 1)− uR(R,G) = |R−G| − 1

2
(|R−G− 1|+ |R−G+ 1|) (2.30)

= uG(R+ 1, G)− uG(R,G) (2.31)

It is possible to compute the potential function rather directly thanks to its inter-

pretation, as the sum of the utility of the agents being introduced one by one in the

city, this sum being independent of the precise order of introduction of the agents. To

do so for a given configuration x ≡ {Rq, Gq}, let us consider that we introduce in each

block first the agents in majority (ie the red ones if Rq > Gq, the green ones if Gq > Rq,

either the red or the green ones if Rq = Gq) and second the agents in minority. Each

of the first agents has a utility of 1 as he settles in the city while each of the other

minority agents has a zero utility when he settles.9 Hence it is straightforward to write

the potential function as:10

F(x) = const+
∑
q∈Q

max(Rq, Gq)

= const+
∑
q∈Q

1

2

(
Rq +Gq + |Rq −Gq|

)
= const′ +

1

2

∑
q∈Q
|Rq −Gq|

One can verify that the same expression can be found using relation 2.17 (see A.3),

the computation being in this case more formal than what we present here.

The reader can recognize an expression well-known to scientists working on residen-

tial segregation. This potential function is indeed a linear form of the Duncan and Dun-

can dissimilarity index, which in the case where the total number of red and green agents

in the city are equal (NR = NG = N), is written as D(x) = 1
2

∑
q |Rq/NR −Gq/NG| =

1
2N

∑
q |Rq−Gq| (Duncan and Duncan, 1955). To the best of our knowledge, an analyti-

cal connection between the two “historical” works of Schelling and Duncan and Duncan

on segregation has never been found before.

It is worth here investigating the link between the potential function and collective

9This example shows that to compute the potential function corresponding to a given pair (uR, uG)
of utility functions, it may be worth to think ahead of a practical order of introduction of the agents.
The computation of F is indeed easier and bears more meanings with an appropriate order.

10Notice that in this particular example, we do not use the convention u(0, 0) = 0. See A.3 for details.
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utility. The collective utility in a neighborhood q is:{
Uq = 1

2 (Rq +Gq + |Rq −Gq|) if Rq 6= Gq

Uq = Rq +Gq if Rq = Gq

The potential function can therefore be written:

F(x) = const+ U(x)−
∑

q|Rq=Gq

1

2

(
Rq +Gq

)
(2.32)

(2.33)

This expression shows that the configuration that maximizes F does not correspond to

the maximum collective utility. The divergence is due to the existence of perfectly mixed

neighborhoods. To be more specific, let us compare two configurations differing by the

existence, in configuration x1, of two perfectly mixed neighborhoods with K < (H+1)/2

agents of each color, that are changed to segregated ones in configuration x2 due to the

exchange of two agents of different color. The difference in the potential function between

the two configurations is only due to the change affecting these two neighborhoods. It

is written:

∆F = F(x2)−F(x1) = 2 (2.34)

because each of the two neighborhoods gained one agent of one color and lost an agent

of the other color. The difference in collective utility consists of the loss of utility of the

agents who are now in minority in their neighborhood, that is:

∆U = U(x2)− U(x1) = −2(K − 1) = 2− 2K (2.35)

Comparing the difference in the potential function and in collective utility between

these two configurations, one observes that decreasing the number of perfectly mixed

neighborhoods decreases collective utility (due to the loss of those who are in the minority

in the new configuration) while increasing the value of the potential function. This is

because the two moving agents have still a utility of 1 in their new neighborhood, while

they clearly exert negative externalities on the agents of the group which is now in

minority in this neighborhood. Stationary configurations will tend therefore to exhibit

few perfectly mixed neighborhoods, at the expense of collective utility.

Our analysis based on Schelling original utility function shows thus two points. First,

it provides an analytical demonstration of Schelling result, that this pair of utility func-
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tions leads to segregated stationary configurations. Second, it sheds light on the source

of the discrepancy between the collective utility of stationary configurations and the

maximum utility that could be attained with a perfectly mixed environment.

2.4.3 Asymmetrically peaked utility functions

In this section, we apply our analytical framework to asymmetrically peaked utility

functions displayed on Fig. 2.3, that have been studied in Pancs & Vriend (2007).

We will see that our potential function provides a criterion for global segregation or

for integration. These utility functions are particularly appealing for demonstrating

Schelling’s intuition, that the aggregate outcome of the game can run against individual

preferences. Indeed, these functions consider a case where agents strictly prefer perfectly

mixed neighborhoods against any level of segregation.

Figure 2.3: Asymmetrically peaked function for some values of m.

In the following, we place ourselves in the case ξ ≡ 0 where the utility of each type of

agents can be described entirely by the number of like-color agents. This choice permits

us to write analytical results more easily. It can furthermore be understood as the limit

case v → 0 For simplicity, we suppose that the number H of possible neighbors of an

agent is even. The asymmetrically peaked utility functions can then be written:{
uR(R,G) = ξap(R)

uG(R,G) = ξap(G)

with: {
ξap(s) = 2s/H if s ≤ H/2
ξap(s) = 2−m− 2(1−m)s/H if s > H/2

with m a fixed parameter (see Fig. 2.3).
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Using Θ the Heaviside function defined by: Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0,

this utility function can also be written:

ξap(s) = 2
s

H
− (2−m)

2

H

(
s− H

2

)
Θ

(
s− H

2

)
For a given state x of the city, simple calculations show that the collective utility

can be written as U(x) =
∑

q

(
Ũ(Rq) + Ũ(Gq)

)
, with

Ũ(S) = 2
S(S − 1)

H
− (2−m)

2S

H

(
S − 1− H

2

)
Θ

(
S − 1− H

2

)
, ∀0 ≤ S ≤ H(2.36)

Likewise, the corresponding potential function is F(x) = const +
∑

q F (Rq, Gq) =

const+
∑

q

(
F̃ (Rq) + F̃ (Gq)

)
, where

F̃ (S) =
S−1∑
s=0

ξap(s)

=
(S − 1)S

H
− 2−m

H

(
S − 1− H

2

)(
S − H

2

)
Θ

(
S − H

2
− 1

)
=

1

2

[
Ũ(S) + (2−m)

(
S − 1− H

2

)
Θ

(
S − 1− H

2

)]
(2.37)

Proof. See A.4. �

This expression implies once again that the potential F and the collective utility U

are linearly related when the individual utility is linear (case m = 2). The lower m, the

less linear the individual utility and the greater the divergence from the F = const+U/2

relation. Thus, relation 2.37 puts forward the crucial role of the asymmetric parameter

m which is the driver of the moves that produce externalities.

To be more specific, let us compare two configurations x1 and x2, which differ only in

the repartition ofH+1 red andH+1 green agents in two neighborhoods. In configuration

x1, the repartition is rather homogeneous, with H/2 + 1 red and H/2 green agents in

the first neighborhood and H/2 red and H/2 + 1 green agents in the second one. In

configuration x2, the repartition is more segregated, with H/2+1+K red and H/2−K
green agents in the first neighborhood and H/2−K red and H/2+1+K green agents in

the second one, K ∈ {0, 1, ...,H/2} being an integer determining the level of segregation.

The difference in the potential function between the two configurations is only due to
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the change affecting these two neighborhoods. It is written:

∆F = 2F̃ (H/2 + 1 +K) + 2F̃ (H/2−K)− 2F̃ (H/2 + 1)− 2F̃ (H/2)

=
2m

H
K(K + 1) (2.38)

Proof. See A.4. �

As could be expected, ∆F increases with m, which means that the segregated con-

figuration is more probable and stable than the mixed one as the asymmetry toward

like-agents is stronger. It also increases with K, which means that for a given m a highly

segregated block is more probable than a slightly segregated one. More importantly, a

perfectly segregated block will be more probable than a perfectly mixed one if and only

if relation 2.38 is positive, ie if and only if m > 0.

The corresponding difference in collective utility consists of the loss of all the agents.

It can be written:

∆U = 2Ũ(H/2 + 1 +K) + 2Ũ(H/2−K)− 2Ũ(H/2 + 1)− 2Ũ(H/2)

= 4K

(
m

(
1

2
+
K + 1

H

)
− 1

)
(2.39)

Proof. See A.4. �

It is obvious that increasing segregation also increases collective utility as soon as

m ≥ 1. It is straightforward to verify based on equation 2.39 that ∆U ≥ 0 ⇔ m ≥
m∗ = H(H + 1)−1.11

Our analysis provides a microscopic criterion allowing to predict a global outcome.

For 0 < m < m∗ ' 1, complete segregated configurations will be obtained at the expense

of the collective utility and for m < 0, perfectly mixed configuration will be obtained.

These results hold of course in the limit of a low noise level (T → 0).

The same is observed with simulations. The snapshots presented on the left panel

of Fig. 2.4 are typical stationary configurations obtained by simulating an artificial city

where the agents’ preferences are given by the asymmetrically peaked utility function

with bounded neighborhoods. These snapshots allow us to compare the analytical results

obtained for v → 0 and T → 0 with a more realistic v = 5% and T = 0.1. We

11The limit value is not strictly equal to 1 because of the precise definition of our model: the argument
of the utility function is the number of neighbors, which does not include the agent himself. In the limit
H � 1, m∗ converges toward 1.
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can see that for values of the asymmetry parameter m close to 0, the system converges

toward randomly-organized mixed configurations which also maximize the utility of most

agents. On the contrary, for higher values of m, completely segregated configurations

are obtained. The transition between these two extreme outcomes occurs for values of

m included between 0.05 and 0.2. The relative smoothness of this transition is due to

the non-zero values of the vacancy rate and of the level of noise.

Figure 2.4: Typical stationary configurations obtained by simulations with the asymmet-
rically peaked utility function. The demographic parameters are (N = 30, v = 5%, nR = 0.5).
Neighborhood sizes are fixed to H = 24, and the level of noise is fixed to T = 0.1. Left: with a bounded
neighborhood description. Right: with a continuous neighborhood description.

The outcome for values of m higher than 0.2 illustrates the paradox of Schelling

model: large segregative patterns appear although they absolutely do not maximize the

utility of most agents, as most of them are stuck inside an homogeneous area with a
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utility of 0.5. In this case, one of the key element driving segregation is the asymmetry

of this utility function, ie, the fact that even if the agents have a strict preference for

mixed environments, they still prefer to belong to the majority group instead of being

in minority, as was already shown in Pancs & Vriend (2007). In particular, with the

asymmetrically peaked utility function, a red (green) agent may move for example from

a 49% red (green) neighborhood to a 51% red (green) neighborhood because it slightly

increases her utility. Meanwhile, this move is likely to decrease the utility of the previous

and new neighbors and therefore decrease the collective utility level. Both of these factors

imply that a highly-segregated configuration is necessarily very stable. Indeed, once the

city is divided into homogeneous areas, a red agent will have no incentive to go from

the red area to the green one, because his utility would drop from 0.5 to 0.12

2.5 Discussion, limits and extensions

In this section, we first motivate the bounded neighborhood assumption with a supple-

mentary result in the continuous neighborhood case and show how our model can be

extended to get closer to a continuous neighborhood definition. We then show that the

potential function of our model can be interpreted in terms of the Shapley value of a

coalitional game, which allows us to relate our results to broader issues of game theory.

In a third development, we use the analytical framework to investigate some extensions

of the model, such as different agents’ preferences and an analysis of taxation.

2.5.1 Bounded vs continuous neighborhoods

Most papers based on simulations as well as those presenting analytical results for par-

ticular cases (Pancs & Vriend, 2007; Zhang, 2004a) deal with continuous neighborhoods.

In this paragraph, we discuss the differences between bounded and continuous neigh-

borhoods.

Analytic limitations in the continuous neighborhood case

Our previous analysis can be extended by considering continuous neighborhoods. In the

following proposition, we establish the important result that, in the context of continuous

neigborhoods, a potential function only exists with linear utility functions.

Proposition 2

12And even though a red agent goes from time to time into the green area by mistake, he will have a
strong incentive to return to the red area because of the asymmetry in the utility function, and he will
do so very likely before a second red agent joins him in the green area.
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When using a continuous neighborhood description, a potential function exists if the

agents’ individual utility functions are bilinear functions of the form

uR(R,G) = uR(0, 0) + aR+ bG

uG(R,G) = uG(0, 0) + bR+ dG (2.40)

where a, b, d are three real constants. In this case, a potential function F can moreover

be written as F : x→ F(x) = const+U(x)/2. Reciprocally, no potential function exists

for any other form of utility functions.

The first part of this claim - which is that a potential function exists if the utility

functions are chosen as in Eqs. 2.40 - is the main subject of Zhang (2004a). The second

part of this claim - which is that no potential function exists for any other choice of utility

functions (in the context of the model presented in this chapter and with continuous

neighborhoods) has to our knowledge never been proved elsewhere.13 A sketch of the

proof of Proposition 2 is given in A.5. The main reason why no potential function

exists in general is that when a moving agent generates externalities on his (past and

new) neighbors, these externalities depend on the type of his neighbors’ own neighbors.

A way to handle this issue in the continuous neighborhood case is to consider linear

utility functions. For these, the generated externalities do not depend on the neighbor’s

neighbors, because linearity implies that the newcomer generates the same change in

utility on his neighbors, independently of their initial situation; the same holds for the

neighbors he leaves. For non linear utilities, a potential function can exist only in the

bounded neighborhood case.14

Simulations and real segregation measures

Let us now investigate the differences between bounded versus continuous neighbor-

hoods in the general case. Based on the simulations in the case of the asymmetrically

peaked utility function, the snapshots displayed on the right panel of Fig. 2.4 present

stationary configurations obtained using a continuous neighborhood description. The

left panel of Fig. 2.4 shows the influence of a bounded neighborhood on the station-

ary configurations obtained with the same parameters. Mixed random configurations

are obtained in both bounded and continuous neighborhood descriptions for low values

13Note however that the inexistence of a potential function does not preclude the convergence of the
game to a stationary state.

14Zhang (2004b) proposes a continuous neighborhood model without vacant cases which allows to
derive a potential function for utility functions defined by two linear pieces.
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of m and segregative patterns also appear in both descriptions for high values of m.

The two descriptions produce a different “transition range” (roughly 0.1 ± 0.05 in the

bounded neighborhood case versus 0.25 ± 0.05 in the continuous neighborhood case).

The strongest difference between the two cases lies in the patterns observed at the city

scale: as there are no connections across neighborhood boundaries in the bounded case,

red and green neighborhoods are observed side by side. In the continuous neighborhood

case on the contrary, segregated patterns appear at the city scale. However, these sim-

ulations suggest that the local degree of segregation does not change with the definition

of neighborhoods that is used.

The same concern was raised in the residential segregation literature, where the

most traditional segregation measures consider a bounded neighborhood definition with

no connections between blocks (Duncan and Duncan, 1955). To remedy this issue,

spatial measures of segregation have been developed, in which the spatial arrangement

of neighborhoods intervenes (Morrill, 1991; Reardon & O’Sullivan, 2004; Wong, 2005).

This can be done either by taking the contiguity between neighborhoods into account, by

integrating a distance matrix between all neighborhoods with a distance-decay function,

thus considering that all the city locations matter when measuring potential contacts

between groups in a specific location, or by using point locations instead of areal tracts.

Drawing the parallel with the bounded and continuous neighborhood segregation models,

the last option would correspond to a continuous neighborhood definition.

From this viewpoint, the main drawback of our segregation model is that an agent is

not affected by the composition of the blocks next to his own, which may seem unrealistic

and explains why red and green neighborhoods are observed side by side in stationary

configurations. Referring to the segregation measure literature, this could be solved by

accounting for the contiguity between blocks. In the following, we propose a variation

of our bounded neighborhood model which includes transitivity between blocks while

maintaining the existence of a potential function.

Bounded neighborhood with spatial transitivity

The bounded neighborhood formulation is based on a given partition (let us call it Q1)

of the city lattice into blocks, as shown on Fig 2.1a. We may define a second partition

Q2 of the city lattice in such a way that blocks of partition Q2 overlap with blocks of

partition Q1. Fig 2.5b shows an example where partitions are shifted from each other

by a half a block’s diagonal. Let us assign to each red (resp. green) agent the two blocks

q1 ∈ Q1 and q2 ∈ Q2 he is living in and the corresponding utilities uR,i = uR(Rqi−1, Gqi)

where (i ∈ {1, 2}) (resp. uGi = uG(Rqi , Gqi − 1)). Two potential functions F1 and F2
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where Fi = F({Rqi , Gqi}) can similarly be assigned to the two partitions.

Figure 2.5: Illustration of the expected effects of a “two partitions” model. a In the one
partition model, homophilic preference leads to a pattern where blocks are exclusively populated by either
red or green agents as seen in Fig 2.4. In this case however, agents are not aware of the composition
of nearby blocks. b In the two partitions framework (in each partition, blocks are delimited by either
white or blue lines), nearby blocks of a given partition have a transitive influence on each other through
the overlapping blocks of the other partition. The same segregative dynamics implying a minimization
of the number of mixed blocks of either partition will lead to a gathering of same-color blocks.

Let us now finally define a model encompassing both partitions. The utility u of

an agent is taken as the sum u1 + u2 corresponding to his utility in both partitions.

It is straightforward to verify that the analytical properties of our model hold in this

larger description and that the states of the city can be characterized by the potential

function F12 = F1 + F2, whose maxima correspond to the stationary states of the

city. Moreover, the fact that partitions overlap implies spatial transitivity between

blocks of a given partition. Indeed, suppose that agents compute their utility with the

asymmetrically peaked utility function, as in section 2.4.3. We showed earlier in the

model with one partition that for m > 0, stationary states maximizing the potential

function correspond to states where each block is either completely red or completely

green, while mixed blocks were dynamically unstable. It is possible to show that in the

two partitions model, the same result holds because the simultaneous maximization of

the two potential functions can be achieved by minimizing the number of mixed blocks,

which leads to a gathering of blocks of the same color, as illustrated on Fig 2.5b.

2.5.2 A coalitional game formulation

The formulation of Schelling model in the context of evolutionary game theory can

yield other fruitful results. The following corollary gives a general form of the potential
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function that can be interpreted in terms of the Shapley value of a non cooperative

coalitional game (Shapley, 1953).

Corollary 2

The potential function F can be written as the sum of the following intermediate func-

tions F :

F[uR,uG](R,G) =
∑

0≤r≤R, 0≤g≤G
(r,g)6=(0,0)

(
R

r

)(
G

g

)
(r + g − 1)! (R+G− r − g)!

(R+G)!
ν(r, g)(2.41)

where ν(r, g) = r uR(r − 1, g) + g uG(r, g − 1) (2.42)

is the collective utility in a block having r red and g green agents.

Let us consider a coalitional game defined by the set of the Rq + Gq agents present in

block q along with a coalition worth equal to the sum of their utilities νq(Rq, Gq) =

Rq uR(Rq−1, Gq)+Gq uG(Rq, Gq−1), that is the collective utility at the neighborhood

level. The sum of the potential functions of the |Q| coalitional games defined on the |Q|
blocks is equal to the potential function F .

Proof. The form of F given in expression 2.41 is derived in A.1. Then, acknowledging

that in a neighborhood with Rq +Gq agents, there are
(
R
r

)(
G
g

)
possible coalitions having

g green and r red agents and applying the formula of the potential function of the

Shapley value derived in Hart & Mas-Colell (1989), one obtains exactly the formula of

the potential function given in 2.41. Hence the potential function F can be written

as the sum of these potential functions of the |Q| coalitional games defined on the |Q|
blocks. �

The potential function F of our non cooperative game can thus be written as the sum

of the potential functions of |Q| coalitional games defined on the |Q| blocks.15 Notice

furthermore that the corresponding Shapley value can be straightforwardly identified,

thanks to Eq. 2.16 and the relationship between the Shapley value and its potential, as

the vector of RRq+Gq whose components are the utilities enjoyed by the agents inside

block q. This also means that condition 2.15, that has to be verified by the utility

functions to have a potential function, corresponds to the Balance Contribution property

of the Shapley value taken in the particular case of two agents of different colors.

15This result illustrates a theorem presented in Ui (2000), which extends the notion of Shapley value
to non cooperative games such as ours.
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Drawing the parallel a bit further allows also to highlight that the same difference

exists between the potential function of the coalitional game and the grand coalition

worth as between the potential function F and the collective utility U . Whereas F
represents the sum of the agents’ utilities at the time when they have moved into their

current location starting with a totally empty city (or are considered to have done

so), U represents the sum of the agents’ utilities once they are all settled. Hence,

while stationary configurations maximize F they do not necessarily (and the following

examples show that they generally don’t) maximize the collective utility.

2.5.3 Segregation by ethnic origin, income, and preferences for public

amenities

Up to now, we have always implicitly supposed that the sole characteristic that the

agents use to evaluate a location is the composition of its neighborhood. Other deter-

minants of residential location choice however exist that are not necessarily correlated

to neighbors’ characteristics, such as local public goods. The red and green labelling of

our two groups thus may correspond to two different ethnic origins or two groups with

different preferences for local public goods. Tiebout (1956)’s analysis of the sorting in-

duced by local public goods is perhaps the main competitor of Schelling (1971) in terms

of its influence on later work on neighborhood choice.

It is very easy to write versions of our model which take into account the agents’

preferences for public goods while keeping the existence and properties of a potential

function. Noting for example A the set of all the public facilities and di,a the distance

between an agent i and an amenity a ∈ A, the utility of an agent i could be rewritten

in a general fashion as

ui(R,G) −→ ui(R,G) + ũi({di,a}a∈A) (2.43)

and one could then easily derive the more general form of the potential function

F(x) −→ F(x) +
∑
i

ũi({di,a}a∈A) (2.44)

This generalized approach could provide a means to correct one of the bias of our

analytical model, namely the lack of heterogeneity in locations. However, the extraction

of the properties of the stationary states from this condensate global function would

become quite challenging, as the dimension of the state variable of the system increases

with the number of added amenities.
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2.5.4 Taxation

In order to illustrate the usefulness of the potential function, we further consider the

introduction of a tax against segregation. The basic concept at the center of a model à la

Schelling is that of an agent deciding where to move according solely to the utility gain

she would achieve if she was to move. Her move affecting her past and new neighbors,

an implicit consequence is that she could generate externalities that amount to ∆U−∆u

while moving.

Suppose now the existence of a benevolent planner who subsidizes positive external-

ities and taxes negative externalities. A way to model the action of that planner is to

write the probability that a move happens as:

Pr{move} =
1

1 + e−
(

∆u+α(∆U−∆u)
)
/T

(2.45)

where 0 ≤ α ≤ 1 is a parameter controlling the tax level. The limit case α = 0

corresponds to a standard Schelling model and the limit case α = 1 corresponds to a

case where only the interest of the collectivity as a whole is taken into account.

Following the path of the proofs developed in section 2.2, one can infer the stationary

distribution in the bounded neighborhood framework:

Π(x) =
e

(
(1−α)F(x)+αU(x)

)
/T∑

z e

(
(1−α)F(z)+αU(z)

)
/T

(2.46)

The potential function can thus in this context be generalized to (1 − α)F(x) +

αU(x). We already noted that the configurations maximizing F are not in general

maximizing U and could even in certain cases (asymmetrically peaked utility functions)

be very unfavorable to U . We show here that the parameter α = 1 of the tax indeed

allows the planner to obtain a stationary configuration in which the collective utility is

maximized.16

Such a Pigouvian tax supposes that the central government has a precise knowledge

of the neighborhood composition of each moving agent, which is a rather utopian as-

sumption. We propose here a new variation of Schelling model incorporating a different

tax rule, based on more realistic assumptions regarding the goverment intervention abil-

ity. We define a simple tax, which aims at preventing the emergence or maintenance of

a dominant group in each block. The central government imposes on each agent a tax

16For development on the level of the tax α necessary or sufficient to break undesired stationary
configurations, see Grauwin et al. (2009a).
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which is defined as:

r(S, θ) =

{
θ|S/H − 0.5| if S/H > 0.5

0 otherwise
(2.47)

where S is the number of agents similar to the taxed agent within his block and θ is a

fixed parameter controlling the tax level. Note that the tax is paid only by every agent

belonging to the majority in their district and therefore does not penalize agents in the

minority. Note also that this definition of the tax is defined at the scale of the block of

size H. This assumption implies a direct competition between the segregative effect of a

model la Schelling, which favors values of s/H greater than 0.5, and the tax mechanism

which favors values of S/H below 0.5.

The utility of red and green agents is then redefined, taking into account the penalty

imposed by the tax, as: {
ûR(R,G, θ) = uR(R,G)− r(R, θ)
ûG(R,G, θ) = uG(R,G)− r(G, θ)

(2.48)

The tax is null for θ = 0. For θ > 0, one can expect that a rise in θ implies a rise in the

probability of having non-segregated configurations in the stationary states.

From an analytical viewpoint, the properties of the model resulting from the Markov

chain theory remain unchanged: there exists one unique stationary distribution and the

final configurations do not depend on the initial ones. It is also straightforward to check

that if the pair of utility functions (ur, uG) verifies condition 2.15, then so does the pair

(ûr, ûG) and it is hence possible to derive a potential function incorporating the tax

effects.

To be more specific, suppose that the utility of the agents is given by the asym-

metrically peaked function introduced in section 2.4.3, which is a case where the the

stationary configuration clearly diverges from the collective optimum. An agent utility

û can be rewritten in this case as:

û(S, θ) = uap,m(S)− r(S, θ)

=

{
2S/H − 0 if S/H ≤ 0.5

2−m− 2(1−m)S/H − θ|S/H − 0.5| if S/H > 0.5

=

{
2S/H if si ≤ 0.5

2− (m− θ/2)− 2(1− (m− θ/2))S/H if S/H > 0.5

= uap,m−θ/2(S) (2.49)
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Hence our tax mechanism can be interpreted in this case as a direct control by

the central government of the asymmetry parameter m in the agents’ utility function.

According to the analytical results obtained in section 2.4.3, the asymmetry parameter

must be inferior to mc = 0 in order to avoid segregation. The equivalence stated in Eq.

2.49 thus allows us to predict that the minimal tax level necessary to break segregated

patterns is:

θc(m) = 2(m−mc) = 2m (2.50)

Our analytical framework thus allows one to consider the consequences of different

tax levels in a very simple way. Other public policies against segregation could also

probably be analysed.

2.6 Conclusion

In this chapter, we used recent tools from evolutionary game theory to develop an ana-

lytical solution of Schelling segregation model for bounded neighborhoods and two ho-

mogeneous groups of agents with general utility functions. This represents a major step

forward compared to previous work, mostly based on computer simulations or provid-

ing analytical results for specific models. We showed that the stationary configurations

reached following the selfish individual moves of the agents maximize a potential func-

tion under mild conditions on the agents’ utility functions. This potential function can

be interpreted as the sum of the agents’ utilities as they move into their neighborhood,

starting from a totally empty city. In other words, the potential function cumulates

the incentives the agents had to move into the neighborhood where they are located.

Thanks to this potential function, we are able to solve Schelling model with general

utility functions.

This step forward was enabled by a partial reduction in the heterogeneity of agents’

neighborhoods through the use of bounded neighborhoods. This allows one to keep track

of how each individual move affects the global configuration. Instead, when continuous

neighborhoods are used, this information is lost because the way a moving agent affects

his past and new neighbors depends on factors (the type of their neighbors’ neighbors)

that are not fully determined by the agent’s decision. Therefore, it is generally impossible

to know how an individual move affects a function of the global configuration unless the

utility functions are linear.

We used the potential function to assess the outcomes of our location model for differ-

ent utility functions, representing different degrees of preference for mixed environments.

We examined successively linear utility functions, Schelling original utility function and
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asymmetrically peaked utility functions. The first two utility functions lead to segre-

gated stationary configurations. In the linear utility case (and for meaningful values of

the parameters), the segregated configurations, that maximize the potential function,

also maximize the collective utility. With Schelling original utility function, a divergence

between collective utility and the potential function appears. Asymmetrically peaked

utility functions lead to segregated configurations even for a slight asymmetry, because

this asymmetry provokes moves to slightly segregated neighborhoods that will never be

compensated by reverse moves. Note finally that when the vacancy rate approaches 0,

any pair of utility functions gives a potential function that allows to characterize the

stationary configurations.

Our analytical approach helps understanding the ingredients that contribute to the

paradoxical result that has generated interest for Schelling model. Even if the dynamics

is governed by agents moving to improve their own utility, the evolution leads to city

configurations in which most of the agents are far from being satisfied. The results

presented in this chapter show rigorously what the two main ingredients of segregation

are. First, the most important element driving segregation is the asymmetry of the utility

function. Symmetric functions do not lead to segregation. Once utility functions favor a

majority status over a minority status, segregation is found, even if agents have a strict

preference for mixed environments, as in the asymmetrically peaked utility function. The

second important element is the existence of externalities. As already noted by Zhang

(2004b) and Pancs & Vriend (2007), the existence of externalities explains why individual

preferences for integrated environments may lead to segregated configurations. Indeed,

location choice by an agent is only based on her own utility level, even if it also affects

her neighbors’ utility levels. This makes mixed neighborhoods unstable and segregated

configurations very stable. The unstability of mixed neighborhoods is particularly clear

in the block configuration for the asymmetrically peaked function. Starting with the

Nash equilibrium where Rq = Gq = (H + 1)/2 and T > 0, the logit rule implies that

there is a positive probability that an agent accepts a slight decrease of his utility, and

leaves a block with composition Rq = Gq = (H + 1)/2. The agents of the same colour

remaining in his former block now have a lower utility and are even more likely to

leave. This creates an avalanche which empties the block of agents of the same color,

as each move away further decreases the utility of the remaining agents. Conversely,

highly-segregated configurations are very stable. Indeed, once the city is divided into

homogeneous areas, a red agent will have no incentive to go from the red area to the

green one, his utility dropping from m to 0.

The analytical tool given here will permit one to consider the outcomes of other
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types of utility functions, in particular those that emerge from empirical findings on

social preferences. It is now conceivable to analyze the theoretical outcomes of these

preferences and possibly to test the effect of introducing public policy instruments aimed

at decreasing segregation. It is also worth noticing that with the original utility function

suggested by Schelling, the potential function happens to be a linear form of the Duncan

and Duncan segregation index. We thus built a bridge between theoretical models of

segregation and residential segregation measures.

The kind of solution that is developed here has been used in physics in equilibrium

statistical mechanics. Equilibrium statistical mechanics has developed powerful tools to

link the microscopic and macroscopic levels. These tools are usually limited to physical

systems, where dynamics is governed not by a selfish criterion but by a global quan-

tity such as the total energy. Blume (1993) already built a bridge between statistical

physics and a coordination game with local interactions. Here, by using the potential

function, which is analogous to state functions in thermodynamics, we have extended

the analytical framework of statistical mechanics to Schelling model. By doing so, our

work paves the way to analytical treatments of a much wider class of social systems,

where dynamics is governed by individual strategies.



Chapter 3

Competition between collective
and individual dynamics

3.1 Introduction

The intricate relations between the individual and collective levels are at the heart of

many natural and social sciences. Different disciplines wonder how atoms combine to

form solids (Cotterill, 2008; Goodstein, 1985), neurons give rise to consciousness (Dama-

sio, 1995; Changeux, 2009) or individuals shape societies (Smith, 1776; Latour, 2007).

However, scientific fields assume distinct points of view for defining the “normal”, or

“equilibrium” aggregated state. Physics looks at the collective level, selecting the config-

urations that minimize the global free energy (Goodstein, 1985). In contrast, economic

agents behave in a selfish way, and equilibrium is attained when no agent can increase

its own satisfaction (Mas-Colell et al., 1995). Although similar at first sight, the two

approaches lead to radically different outcomes.

In this chapter, we illustrate the differences between collective and individual dy-

namics on an exactly solvable model, similar to Schelling’s segregation model (Schelling,

1971). The model considers individual agents which prefer a mixed environment, with

dynamics that lead to segregated or mixed patterns at the global level. A “tax” pa-

rameter monitors continuously the agents’ degree of altruism or cooperativity, i.e., their

consideration of the global welfare. At high degrees of cooperativity, the system is in

a mixed phase of maximal utility. As the altruism parameter is decreased, a phase

transition occurs, leading to segregation. In this phase, the agents’ utilities remain low,

in spite of continuous efforts to maximize their satisfaction. This paradoxical result of

87
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Schelling’s segregation model (Schelling, 1971) has generated an abundant literature.

Many papers have simulated how the global state depends on specific individual utility

functions, as reviewed by (Clark & Fossett, 2008). There have been attempts at solving

Schelling’s model analytically, in order to provide more general results concerning the

consequences of individual preferences on segregation levels (Pollicott & Weiss, 2001;

Zhang, 2004b; Dokumaci & Sandholm, 2007). However, these are limited to specific

utility functions. More recently, physicists have tried to use a statistical physics ap-

proach to understand the segregation transition (Dall’Asta et al., 2008; Vinkovic and

Kirman, 2006; Gauvin et al., 2009). The idea seems promising, since statistical physics

has successfully bridged the micro-macro gap for physical systems governed by collective

dynamics. However, progress was slow by lack of an appropriate framework allowing for

individual dynamics (Dall’Asta et al., 2008). In this chapter, we introduce a rigorous

generalization of the physicist’s free energy, which includes individual dynamics. By

introducing a “link” state function1 which is maximized in the stationary state, we pave

the way to analytical treatments of a much wider class of systems, where dynamics is

governed by individual strategies. As an example, we provide a quantitative solution to

Schelling’s segregation model for very general utility functions.

3.2 Model

Our model represents in a schematic way the dynamics of residential moves in a city.

For simplicity, we include one type of agent, but our results can readily be generalized

to deal with agents of two “colors”, as in the original Schelling model (Schelling, 1971)

(see below and appendix B). The city is divided into Q blocks (Q � 1), each block

containing H cells or flats (Fig 3.1). We assume that each cell can contain at most one

agent, so that the number nq of agents in a given block q (q = 1, . . . , Q) satisfies nq ≤ H,

and we introduce the density of agents ρq = nq/H. Each agent has the same utility

function u(ρq), which describes the degree of satisfaction concerning the density of the

block he is living in. The collective utility is defined as the total utility of all the agents

in the city: U(x) = H
∑

q ρqu(ρq), where x ≡ {ρq} corresponds to the coarse-grained

configuration of the city, i.e. the knowledge of the density of each block. For a given

x, there is a large number of ways to arrange the agents in the different cells. This

number of arrangements is quantified by its logarithm S(x), called the entropy of the

configuration x.

1Word of caution: in this chapter and in the following, we use the notation L (as link) to designate
the potential function previously called F . In these two more ‘physics-centered’ chapters, we keep the
notation F to designate an analogue the notion of free energy introduced in physics.
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Figure 3.1: Configurations of a city composed of Q = 36 blocks containing each H = 100
cells, with ρ0 = 1/2. (a) Mixed state. Stationary state of the city for m = 0.5, α = 1
and T → 0. Agents are distributed homogeneously between the blocks, each of them
having a density of 0.5. (b) Segregated configuration. Stationary state of the city
for m = 0.5, α = 0 and T → 0. Agents are gathered on 20 blocks of mean density
0.9, the other blocks being empty. In the original Schelling model Schelling (1971),
each agent has a distinct neighborhood, defined by its 8 nearest neighbors. Here, we
only keep the essential ingredient of blocks of distinct densities. Our model shows the
same qualitative behavior as Schelling’s but can be solved exactly, thanks to the partial
reduction of agent’s heterogeneity.

The dynamical rule allowing the agents to move from one block to another is the

following. At each time step, one picks up at random an agent and a vacant cell, within

two different blocks. Then the agent moves in that empty cell with probability:

Pxy =
1

1 + e−C/T
, (3.1)

where x and y are respectively the configurations before and after the move, and C is

the cost associated to the proposed move. The positive parameter T is a “temperature”

which introduces in a standard way (Anderson et al., 1992) some noise on the decision

process. It can be interpreted as the effect of features that are not explicitly included

in the utility function but still affect the moving decision (urban facilities, friends. . . ).

We write the cost C as :

C = ∆u+ α(∆U −∆u) (3.2)

where ∆u is the variation of the agent’s own utility upon moving and ∆U is the variation

of the total utility of all agents. The parameter 0 ≤ α ≤ 1 weights the contribution

of the other agents’ utility variation in the calculation of the cost C, and it can thus
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be interpreted as a degree of cooperativity (or altruism). For α = 0, the probability

to move only depends on the selfish interest of the chosen agent, which corresponds to

the spirit of economic models such as Schelling’s. When α = 1, the decision to move

only depends on the collective utility change, as in physics’ models. An economical

interpretation could be that individual moves are controlled by a central government,

via a tax that internalizes all the externalities (more on this below). Varying α in a

continuous way, one can interpolate between the two limiting behaviors of individual

and collective dynamics.

3.3 Results

We wish to find the stationary probability distribution Π(x) of the microscopic config-

urations x. If the cost C can be written as C = ∆V ≡ V (y) − V (x), where V (x) is a

function of the configuration x, then the dynamics satisfies detailed balance Evans et al.

(2005) and the distribution Π(x) is given by

Π(x) =
1

Z
eF (x)/T , (3.3)

with F (x) = V (x) + TS(x) and Z a normalization constant. The entropy has for large

H the standard expression S(x) = H
∑

q s(ρq), with

s(ρ) = −ρ ln ρ− (1− ρ) ln(1− ρ). (3.4)

We now need to find the function V (x), if it exists. Given the form (3.2) of C, finding

such a function V (x) amounts to finding a “linking” function L(x), connecting the

individual and collective levels, such that ∆u = ∆L. The function V would thus be

given by V (x) = (1−α)L(x) +αU(x). By analogy to the entropy, we assume that L(x)

can be written as a sum over the blocks, namely L(x) = H
∑

q `(ρq). Considering a

move from a block at density ρ1 to a block at density ρ2, ∆L reduces in the large H

limit to `′(ρ2) − `′(ρ1), where `′ is the derivative of `. The condition ∆u = ∆L then

leads to the identification `′(ρ) = u(ρ), from which the expression of `(ρ) follows:

`(ρ) =

∫ ρ

0
u(ρ′)dρ′. (3.5)

As a result, the function F (x) can be expressed in the large H limit as F (x) =

H
∑

q f(ρq), with a block potential f(ρ) given by :
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f(ρ) = −Tρ ln ρ− T (1− ρ) ln(1− ρ)

+ αρu(ρ) + (1− α)

∫ ρ

0
u(ρ′)dρ′. (3.6)

Figure 3.2: Asymmetrically peaked individual utility as a function of block density. The
utility is defined as u(ρ) = 2ρ if ρ ≤ 1/2 and u(ρ) = m+2(1−m)(1−ρ) if ρ > 1/2, where
0 < m < 1 is the asymmetry parameter. Agents strictly prefer half-filled neighborhoods
(ρ = 1/2). They also prefer overcrowded (ρ = 1) neighborhoods to empty ones (ρ = 0).

The probability Π(x) is dominated by the configurations x = {ρq} that maximize

the sum
∑

q f(ρq) under the constraint of a fixed ρ0 = 1/Q
∑Q

q=1 ρq. To perform this

maximization procedure, we follow standard physics methods used in the study of phase

transitions (like liquid-vapor coexistence (Callen, 1985)), which can be summarized as

follows. If f(ρ) coincides with its concave hull at a given density ρ0, then the state of

the city is homogeneous, and all blocks have a density ρ0. Otherwise, a phase separation

occurs: some blocks have a density ρ∗1 < ρ0, while the others have a density ρ∗2 > ρ0 (see

Appendix B).

Interestingly, the potential F = (1 − α)L + αU + TS appears as a generalization

of the notion of free energy introduced in physical systems. Mapping the global utility

U onto the opposite of the energy of a physical system, it turns out that for α = 1,

the maximization of the function U + TS is equivalent to the minimization of the free

energy E−TS. For α < 1, the potential F takes into account individual moves through

the link function L. Furthermore, the potential F can be calculated for arbitrary utility

functions, allowing to predict analytically the global town state. Such an achievement

eluded so far individualistic, Schelling-type models, which had to be solved through

numerical simulations (Clark & Fossett, 2008).

To obtain explicitly the equilibrium configurations, one needs to know the specific
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m < 2/3 2/3 ≤ m ≤ 1

ρs
1

2

√
(2−m)/(1−m) 1

U∗
1

1 +
√

(1−m)/(2−m)
m

L∗
1

1 +
√

(1−m)/(2−m)
1/2 +m/4

Table 3.1: Characteristics of the segregated equilibrium. The table displays the
density ρs in the non-empty blocks, the normalized collective utility U∗ and the normal-
ized link L∗ of the stationary configurations obtained for α = 0. It is straightforward to
check that U∗(m) ≤ 1 and L∗(m) ≥ 1/2 for m ≤ 1.

form of the utility function. To illustrate the dramatic influence of the cooperativity

parameter α, we use the asymmetrically peaked utility function (Pancs & Vriend, 2007),

which indicates that agents prefer mixed blocks (Fig 3.2). The overall town density is

fixed at ρ0 = 1/2 to avoid the trivial utility frustration resulting from the impossibility to

attain the optimal equilibrium (ρq = 1/2 for all blocks). We also consider for simplicity

the limit T → 0, to avoid entropy effects. The qualitative behaviour of the system is

unchanged for ρ0 6= 1/2 or for low values of the temperature, as shown in the appendix

B.

In the collective case (α = 1), the optimal state corresponds to the configuration

that maximizes the global utility, which can be immediately guessed from Figure 3.2,

namely ρq = 1/2 for all q (Fig 3.1a). On the contrary, in the selfish case (α = 0, Fig

3.1b), maximization of the potential F (x) shows that the town settles in a segregated

configuration where a fraction of the blocks are empty and the others have a density

ρs > 1/2. Surprisingly, the city settles in this state of low utility in spite of agents’

continuous efforts to maximize their own satisfaction. To understand this frustrated

configuration, note that the collective equilibrium (ρq = 1/2 for all q) is now an unstable

Nash equilibrium at T > 0. The instability can be understood by noting that at T > 0

there is a positive probability that an agent accepts a slight decrease of its utility, and

leaves a block with density ρq = 1/2. The agents remaining in its former block now have

a lower utility and are more likely to leave to another ρq = 1/2 block. This creates an

avalanche which empties the block, as each move away further decreases the utility of

the remaining agents. This avalanche stops when the stable (Nash) equilibrium, given

by the maximum of the potential, is reached. To understand the transition between

mixed and segregated configurations, it is instructive to calculate the values of both

the overall utility and the potential, for different values of m (at α = 0). In case of
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a homogeneous town (an unstable Nash equilibrium for which ρq = 1/2 for all q), the

normalized collective utility is given by U∗ = U/(ρ0HQ) = u(ρ0 = 1/2) = 1. The

normalized link equals, for all m, L∗ = L/(ρ0HQ) = `(ρ0)/ρ0 = 1/2, where ` is given

in Eq. 3.5. The values of L∗ and U∗ displayed in Table 3.1 show that the utility

of the segregated equilibrium is lower but that its potential is higher, explaining its

stability. Note that the gap between the link values of the homogeneous and segregated

configurations increases with m.

Figure 3.3: Phase diagram of the global utility as a function of the cooperativity α
and the asymmetry m, at T → 0 and ρ0 = 1/2. The average utility per agent U∗ =
U/(ρ0HQ) is calculated by maximizing the potential F (x) for the peaked utility shown in
Fig. 3.2, see Appendix B. The plateau at high values of α corresponds to the mixed phase
of optimal utility, which is separated from the segregated state by a phase transition
arising at αc = 1/(3 − 2m). The overall picture is qualitatively unchanged for low but
finite values of the temperature, see appendix B.

This helps understanding why the greater the m, the greater the value of tax param-

eter necessary to reach the homogeneous configuration. Indeed, the segregated states

are separated from mixed ones by a phase transition at the critical value αc = 1/(3−2m)

- which increases with m (Figure 3.3). This transition differs from standard equilibrium

phase transitions known in physics, which are most often driven by the competition

between energy and entropy. Here, the transition is driven by a competition between

the collective and individual components of the agents’ dynamics. The unsatisfactory

global state of the city can be interpreted, from the economics’ point of view, as an effect

of externalities: by moving to increase its utility, an agent may decrease other agents’

utilities, without taking this into account. From a standard interpretation in terms of

Pigouvian tax (Auerbach, 1985), one expects that α = 1 is necessary to reach the opti-

mal state, since by definition this value internalizes all the externalities the agent causes
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Figure 3.4: Phase diagrams for the asymmetrically peaked individual utility (Fig. 3.2,
with m = 0.8) for different values of T . Increasing the temperature T tends to favour
homogeneous states. For small but finite temperatures (roughly T < 0.2), the phase
diagram is modified only for extremal values of ρ0, as expected from the entropic term
Ts(ρ) = −Tρ ln ρ− T (1− ρ) ln(1− ρ). As T is increased, the whole diagram is affected
by the entropic term. Compared to the T = 0 case, the main change is the appearance
of a second homogeneous phase for ρ0 < 1/2. But while for ρ0 > 1/2 homogeneity
corresponds to the optimal choice for the agents, for ρ0 < 1/2, collective utility is not
maximized in a homogeneous city. The city is homogeneous by noise, not by choice.
Note that an increase in α tends to reduce this domain, while it tends to increase the
homogeneous domain for ρ0 > 1/2.

to the others when moving. Our results show that the optimal state is maintained until

much lower tax values (for example, αc = 1/3 at m = 0), a surprising result which de-

serves further analysis. Another interesting effect is observed for m > 2/3 (Figure 3.3).

Introducing a small tax has no effect on the overall satisfaction, the utility remaining

constant until a threshold level is attained at αt = (3m− 2)/(6− 5m).

We focused up to now on the zero temperature limit. For low temperatures, the

main qualitative conclusions are not modified, as the phase diagram is modified only

for extremal values of ρ0 by entropic contributions. At higher temperatures the city

tends to become homogeneous, as the effect of “noise” (i.e., of the features that are not

described in the model) dominates over the utility associated to density of the blocks

(see Fig. 3.4).
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3.4 Discussion

There are two main differences between our simple model and Schelling’s original model

(Schelling, 1971) : the existence of agents of two colors and the definition of the agent’s

neighborhoods. We now show that these additional features do not introduce any es-

sential effect.

Let us start by introducing agents of two “colors” (such as red and green). Simple

calculations (see appendix B) show that for two species which only care about the density

of neighbors of their own color, the block potential (eq. 3.6) becomes :

f(ρR, ρG) = −TρR ln ρR − TρG ln ρG

− T (1− ρR − ρG) ln(1− ρR − ρG)

+ α
[
ρR uR(ρR) + ρG uG(ρG)

]
+ (1− α)

[ ∫ ρR

0
uR(ρ′)dρ′ +

∫ ρG

0
uG(ρ′)dρ′

]
with straightforward notations (for example uR(ρR) represents the utility of a red agent

in a block with a density ρR of red agents). In the more general case of utility functions

depending on both the density of similar and dissimilar neighbors, it is also possible

to derive a block potential if the utility functions verify a symmetry constraint. This

constraint is not very restrictive, in the sense that no qualitative feature of the model

is lost when one restrains the study to utilities that verify it (see the appendix B).

Finding the equilibrium configurations amounts to finding the set {ρqR, ρqG} which

maximizes the potential F (x) =
∑

q f(ρqR, ρqG) with the constraints
∑

q ρqR = Qρ0R

and
∑

q ρqG = Qρ0G, where ρ0G and ρ0R represent respectively the overall concentration

of green and red agents.

Because of the spatial constraints (the densities of red and green agents in each block

q must verify ρqR + ρqG ≤ 1), the ‘two populations’ model can not formally be reduced

to two independent ‘one population’ models. However, the stationary states can still be

easily computed. Let us focus once again on the T → 0 limit and suppose for example

that ρ0R = ρ0G = ρ0/2. The stationary states depends once again on the values of ρ0,

m and α. For low values of α, it can be shown that the system settles in segregated

states where each block contains only one kind of agent with a density ρ0 (see Figure

3.5a). For α ≥ αc, the system settles in mixed states where the density of a group in a

block is either 0 or 1/2 (see Figure 3.5b). The reader is referred to appendix B for more

details.
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We now turn to the difference in agent’s neighborhoods. In Schelling’s original

model, agents’ neighbors are defined as their 8 nearest neighbors. Our model considers

instead predefined blocks of common neighbors. First, it should be noted that there is no

decisive argument in favor of either neighborhood definition in terms of the realism of the

description of real social neighborhoods. Second, we note that introducing blocks allows

for an analytical solution for arbitrary utility functions. This contrasts with the nearest

neighbor case, where the best analytical approach solves only a modified model which

abandons the individual point of view and is limited to a specific utility function (Zhang,

2004b). Finally, the simulations presented on Figures 3.5 show that the transition from

segregated to mixed states is not affected by the choice of the neighborhood’s definition.

We conclude that the block description is more adapted to this kind of simple modelling,

which aims at showing stylized facts as segregation transitions.

Our simple model raises a number of interesting questions about collective or in-

dividual points of view. In the purely collective case (α = 1), the stationary state

corresponds to the maximization of the average utility, in analogy to the minimization

of energy in physics. In the opposite case (α = 0), the stationary state strongly differs

from the simple collection of individual optima (Kirman, 1992): the optimization strat-

egy based on purely individual dynamics fails, illustrating the unexpected links between

micromotives and macrobehavior (Schelling, 1978). However, the emergent collective

state can be efficiently captured by the maximization of the linking function `(ρ) given

in Eq. (3.5), up to constraints in the overall town density. This function intimately

connects the individual and global points of view. First, it depends only on the global

town configuration (given by the ρq), allowing a relatively simple calculation of the equi-

librium. At the same time, it can be interpreted as the sum of the individual marginal

utilities gained by agents as they progressively fill the city after leaving a reservoir of

zero utility. In the stationary state, a maximal value of the potential L is reached. This

means that no agent can increase its utility by moving (since ∆u = ∆L), consistently

with the economists’ definition of a Nash equilibrium.

Equilibrium statistical mechanics has developed powerful tools to link the micro-

scopic and macroscopic levels. These tools are limited to physical systems, where dy-

namics is governed by a global quantity such as the total energy. By introducing a

link function, analogous to state functions in thermodynamics or potential functions in

game theory Monderer & Shapley (1996), we have extended the framework of statisti-

cal mechanics to a Schelling-like model. Such an approach paves the way to analytical

treatments of a much wider class of systems, where dynamics is governed by individual

strategies.
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Figure 3.5: Stationary configurations obtained by simulating the evolution of a city
inhabited by a equal number of red and green agents whose preference are given by the
asymmetrically peaked utility function (m = 0.5). The rate of vacant cells (in white)
is fixed to 10%. Top panel. The city is divided into blocks of size H = 100. In
accordance with the analytic model, a segregated configuration is obtained when α = 0
(snapshot a) and a more homogeneous configuration is obtained for α = 1 (snapshot
b). Bottom panel. The utility of an agent depends on the local density of similar
neighbors computed on the H = 108 nearest cells. While of different topological nature,
a segregated configuration is still obtained for α = 0 (snapshot c) and a homogeneous
configuration is still obtained for α = 1 (snapshot d). In all those simulations, we take
T = 0.1. The small amount of noise hence generated, while not changing the nature
of the stationary states compared to the case T → 0, conveniently reduces the time of
convergence of the system.
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Chapter 4

Effective Free Energy for
Individual Dynamics

4.1 Introduction

The intricate relations between the individual and collective levels are at the heart of

many natural and social sciences (Grauwin et al., 2009a). Physics looks at the collective

level, selecting the configurations that minimize the global free energy (Goodstein, 1985).

In contrast, economic agents behave in a selfish way, and equilibrium is attained when

no agent can increase its own satisfaction (Mas-Colell et al., 1995).

Recently, physicists have tried to use statistical physics approaches to understand

social phenomena such as the segregation transition (Dall’Asta et al., 2008; Vinkovic

and Kirman, 2006). The idea seems promising because statistical physics has success-

fully bridged the gap between the micro and macroscopic levels for physical systems

governed by collective dynamics. However, progress remained slow due to the lack of

an appropriate framework allowing to take into account the selfish dynamics typical

of socio-economic agents. On the other hand, game theorists have developed in the

last decades the notion of Potential Games, in which each player’s gain resulting from

a change of state is equal to the variation of a potential function (Anderson et al.,

1992; Young, 1993; Monderer & Shapley, 1996; Ui, 2000). This potential function hence

provides what physicists need: a link between individual and collective levels.

In this chapter, we propose a generic analytical framework that builds on concepts

originating both from statistical physics and game theory. We introduce a rigorous

generalization of the physicist’s free energy, which encompasses individual dynamics.

By introducing a “link” state function that is maximized in the stationary state, we

99



CHAPTER 4. EFFECTIVE FREE ENERGY FOR INDIVIDUAL DYNAMICS 100

pave the way to analytical treatments of a much wider class of systems, where dynamics

is governed by individual strategies. Quantitative solutions of two models are also

provided as examples.

4.2 The Model

4.2.1 Generic model

Our model represents in a schematic way the dynamics of agents making individual

choices. Throughout this chapter, N = {1, . . . , N} denotes a finite set of agents, qi ∈
{1, . . . , Q} the choice of agent i ∈ N , the vector ~q = (qi)i∈N describing the state of

the system and Nq (resp. nq) the set (resp. number) of agents following choice q ∈
{1, . . . , Q}. Each agent i ∈ N can moreover be characterized by his utility function,

which describes the degree of satisfaction concerning his choice. An agent’s utility

function is supposed to depend only on his own choice and on the set Nqi of agents

making the same choice, namely ui(~q) = ui(qi, Nqi). We also introduce the collective

utility, defined as the total utility of all the agents: U(~q) =
∑

i ui(~q).

The dynamical rule allowing the agents to change their choice is the following. At

each time step, one picks up at random an agent and a choice q∗ ∈ {1, . . . , Q}. Then

the agent goes from choice qi to choice q′i = q∗ with probability:

Pqi→q′i =
1

1 + e−∆ui/T
, (4.1)

where ∆ui = ui(~q′) − ui(~q) is the variation of the agent’s own utility upon his change

of choice. The parameter T > 0 is a “temperature” that introduces in a standard way

some noise on the decision process (Anderson et al., 1992). It can be interpreted as the

effect of features that are not explicitly included in the utility function but still affect

the decision.

We wish to find the stationary probability distribution Π(~q) of the microscopic con-

figurations ~q. If ∆ui can be written as ∆ui = ∆L ≡ L(~q′)− L(~q), where L(~q) is a state

function of the configuration ~q, then the dynamics satisfies detailed balance (Evans et al.,

2005) and the distribution Π(~q) is given by

Π(~q) =
1

Z
eL(~q)/T , (4.2)

with Z a normalization constant.

It can be shown (Grauwin et al., 2009a; Ui, 2000) that a sufficient and necessary
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condition1 for a “linking” function L to exist is

ui(qi, Nqi \ {j})− ui(qi, Nqi) = uj(qj , Nqj \ {i})− uj(qj , Nqj ) (4.3)

for any i ∈ N and j ∈ N . Note that this relation is automatically satisfied in the

case qi 6= qj . Eq. (2.15) expresses a symmetric condition on the utility variation (or

externality) an agent produces on another one when he changes his choice. Condition

Eq. (4.3) is also rather easy to satisfy in case of homogeneous agents sharing the same

utility function (see examples in section 4.3). In contrast, this condition imposes more

restriction to models with heterogeneous agents and explicit examples are then more

difficult to build.

Interestingly, the linking function L appears as (the opposite of) an effective energy

in terms of physical systems (Eq. (4.2) being the analogue of a Gibbs distribution),

but also corresponds to the notion of potential function in game theory (Monderer &

Shapley, 1996; Ui, 2000).

4.2.2 Homogeneous agents

In the following, we restrict our study to models where the agents’ utility functions

can be written as ui(~q) = u(qi, nqi/H), where H is a parameter characterizing the

typical number of agents making a given choice (for instance the natural capacity of

an infrastructure). This parameter is assumed to scale linearly with N , the ratio h =

H/N being fixed. This particular form of utility function implies that the agents share

homogeneous properties and that they are sensitive to the relative proportion of agents

making the same choice as them. It also implies that Eq (4.3) is verified, meaning that

a linking function L always exists. It is straightforward to check that it can be written

as :

L(~q) =

Q∑
q=1

nq(~q)∑
m=0

u(q,m/H) (4.4)

In the limit N →∞ with ρq = nq/H fixed, one finds

L(~q) → hN

Q∑
q=1

∫ ρq

0
u(q, ρ) dρ. (4.5)

1If the state function L exists, the relation ∆ui = ∆L requires only that it be defined up to a
constant.
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This particular form of the potential function L allows us to interpret it as the sum of

the individual marginal utilities gained by agents as they progressively enter the system

after leaving a reservoir of zero utility.

Since the agents are supposed to be identical (but still distinguishable), it seems

natural to keep track of “mesoscopic” observables such as the coarse-grained states

x ≡ {ρq} rather than the “microscopic” states ~q. The number of states ~q corresponding

to a given coarse-grained state x is quantified by its logarithm:

S(x) = ln
N !∏
q nq!

h, {ρq} fixed−−−−−−−−→
N→∞

−N lnh− hN
Q∑
q=1

ρq ln ρq. (4.6)

The stationary distribution of the coarse-grained configurations hence takes the form:

ΠN,T (x) =
1

ZN,T
eF (x)/T =

1

Z
′
N,T

e(hN/T )
∑

q fN,T (q,ρq) (4.7)

where F (x) ≡ L(x) + TS(x) can be seen as (the opposite of) an effective free energy of

the system, Z
′
N,T = ZN,Th

−N and where

fN,T (q, ρ) =

ρH∑
m=0

u(q,m/H)− Tρ ln ρ (4.8)

In the limit N →∞ with ρq = nq/H fixed, one finds

fN,T (q, ρ) → f∞,T (q, ρ) ≡
∫ ρ

0
u(q, ρ′) dρ′ − Tρ ln ρ (4.9)

According to the form of the distribution ΠN,T given by Eq (4.7), in the limit of large

N the stationary configurations are those that maximize the sum
∑

q f∞,T (q, ρq) under

the constraint h
∑

q ρq = 1. We explore different maximization procedures in examples

of applications presented in next section.

4.3 Applications

4.3.1 Road congestion

We apply here our generic model framework to a simplified version of Chu’s (Chu,

1995) congestion model. In this model, a number N of identical commuters travel every

morning from home to work. All agents travel on the same road and wish to arrive at
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time t∗. Since congestion is a collective phenomenon that no single agent can master to

arrive at her preferred arrival time t∗, agents have to choose a less optimal arrival time

t ∈ Z (time is supposed to be discrete) in order to minimize the private trip cost, c(t),

which includes two parts. The first part is the travel time cost αTT (t) where α is the

unit cost of travel time and TT (t) is the travel time. The second part is the schedule

delay cost, which is β(t∗ − t) if one arrives early and ν(t− t∗) if one arrives late, β and

ν being unit costs of schedule delay. To make analytical calculations possible, the travel

time is supposed to depend on the number nt of commuters arriving at time t through

the function TT (t) = (nt/H)γ where H and γ are fixed parameters. The parameter H

can be interpreted as a standard road capacity (the linearity between H and N can thus

reflect that bigger roads are built when the traffic is more important) and the parameter

γ measures the elasticity of travel time with respect to nt.

Figure 4.1: Stationary values derived by a maximization of L for N = 5000 (in red)
and N →∞ (in black) commuters. (a) Normalized proportion of arriving agents
ρt = nt/H. (b) Normalized proportion of agents on the road Qt/H, where Qt
is the number of agent queueing on the road at a given time t. It is computed as the
difference between the number of departed and arrived agents Qt =

∑t
t′=0

(
dt′ − nt′

)
,

where the distribution of departure time {dt} is deduced from the distribution of arrival
time {nt} and travel time {TT (t)}. See Chu (1995) for more details on this procedure.
The computations have been realized in the limit T → 0, with the parameters values
t∗ = 900, α = 2, β = 1, ν = 4, γ = 4, h = 4. 10−4.

This congestion model fits our framework model, the utility of an agent arriving at

time t being

u(nt) = −c(t) = −

{
α(nt/H)γ + β|t∗ − t| if t < t∗

α(nt/H)γ + ν|t∗ − t| if t ≥ t∗
(4.10)
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The stationary coarse-grained configurations in the limit of large N are thus those that

maximize the sum
∑

t f∞,T (t, ρt), where:

f∞,T (t, ρ) =

{
α
γ+1ρ

γ+1 + βρ|t∗ − t| − Tρ ln ρ if t < t∗

α
γ+1ρ

γ+1 + νρ|t∗ − t| − Tρ ln ρ if t ≥ t∗
(4.11)

under the constraint h
∑

t ρt = 1. Since the sum
∑

t f∞,T (t, ρt) is maximized by the

stationary configuration, the stationary values of {ρt} verify (for any t such that ρt 6= 0)

the relation:
∂f∞,T
∂ρ

(t, ρt) =
∂f∞,T
∂ρ

(t∗, ρt∗) (4.12)

which can be easily derived using Lagrange multipliers. Eq (4.12) provides for each

time step t an implicit relation between ρt and ρt∗ (resp. the normalized densities at

time t and t∗). All these implicit relations along with the conservation of the number

of agents expressed by the condition h
∑

t ρt = 1 allow one to compute numerically the

distribution {ρt}. Fig. 4.1 presents results that have been computed with this method,

for N → ∞ and for a finite value (N = 5000) of the number of agents obtained by

solving numerically an equivalent of Eq. (4.12). These results suggest that finite size

effects remain small as soon as N reaches values of a few thousands, and that the

main properties of the model can be studied in the limit N → ∞. Notice that our

analysis of the congestion model in terms of a potential games allows us to determine

(numerically) the stationary state of the systems even for finite size, which is rarely

possible with usual economics analysis since, quoting (Otsubo & Rapoport, 2008), the

common practice in transportation science and economics is to use continuous models

for analyzing phenomena that are essentially discrete.

4.3.2 Residential choice

As a second example, we apply our generic framework to a Schelling-like model describ-

ing the dynamics of residential moves in a city (Grauwin et al., 2009a; Schelling, 1978).

The virtual city is divided into Q blocks (Q� 1), each block containing H cells or flats

(Fig 4.2). We assume that each cell can contain at most one agent, so that the number

nq of agents in a given block satisfies nq ≤ H. An agent’s utility depends only on the

density ρq = nq/H of the block he is living in, ie ui(~q) = u(ρq), with the convention

that u(ρ) = −∞ for ρ > 1.

Once again, this residential model can be solved thanks to our framework. With

the particular choice of the asymmetrically peaked utility function given Fig 4.2(a), the

stationary coarse-grained configurations in the limit of large N are thus those which
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Figure 4.2: (a). Asymmetrically peaked individual utility as a function of block density.
The utility is defined as u(ρ) = 2ρ if ρ ≤ 1/2 and u(ρ) = 3/2 − ρ if ρ > 1/2. Agents
strictly prefer half-filled neighborhoods (ρ = 1/2). They also prefer overcrowded (ρ = 1)
neighborhoods to empty ones (ρ = 0). (b) Stationary configurations of a virtual city
for T → 0. Blocks are separated in two phases with different densities of agents. (c)
Stationary configurations of a virtual city for T � 1. Agents are distributed homoge-
neously between the blocks. The city is composed of Q = 36 blocks containing each
H = 100 cells, with a mean density 〈ρq〉 = N/HQ = 1/2.

maximize the sum
∑

q f∞,T (q, ρq), where2 :

f∞,T (q, ρ) =

{
ρ2 − Tρ ln ρ if ρ < 1/2

−ρ2/2 + 3ρ/2− 3/8− Tρ ln ρ if ρ ≥ 1/2
(4.13)

To perform the maximization procedure, one can follow standard physics methods

used in the study of phase transitions (like liquid-vapor coexistence (Callen, 1985)). In

this case, it is a simple exercise to determine that for N � 1 and in the limit T → 0,

a phase separation occurs. A fraction min
(
2
√

3/3hQ, 1
)

of the blocks have a density

min
(√

3/2, 1/hQ
)

while the others are empty. This result is illustrated on Fig. 4.2.

For more details on the maximization procedure, the interested reader is referred to

(Grauwin et al., 2009a, or appendix B).

4.4 Discussion

We derived in this chapter an effective free energy F = L+ TS in a generic framework

model. The main property of this function is to intimately connect the individual and

global points of view. Our simple model raises a number of interesting questions: in the

limit T → 0, the stationary configurations are those maximizing the potential L and not

2Caution: the expression of the entropy S(x) depends on the precise definition of the “microscopic”
states of the system. If the agents were to choose the cell (instead of the block) in which they would
like to move, one would need to add the term S′(x) =

∑
q ln H!

(H−nq)!
in the expression of the entropy.
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the collective utility U . Hence, they may differ from the simple collection of individual

optima (Kirman, 1992), illustrating the unexpected links between micromotives and

macrobehavior.

More specifically, we derived a simple expression of this effective free energy in the

thermodynamic limit N →∞ for homogeneous agents. We showed that this simple form

allows us to derive in an easy and flexible way quantitative solutions to economics mod-

els based on individual dynamics. This approach can be extended to some models with

heterogeneous agents. Possible examples range from a two-population residential segre-

gation model (Grauwin et al., 2009a, or chapter 2), Ising-like model with heterogeneous

pairs interactions (Nadal & Gordon, 2005), or the Hopfield model (Ui, 2000).
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Chapter 5

Complex Systems Science:
Dreams of Universality, Reality of

Interdisciplinarity

5.1 Introduction

Fundamental science has striven to reduce the diversity of the world to some stable

building blocks such as atoms and genes. To be fruitful, this reductionist approach

must be complemented by the reverse step of obtaining the properties of the whole (ma-

terials, organisms) by combining the microscopic entities, a notoriously difficult task

(Hayden, 2010; Anderson, 1972; Grauwin et al., 2009a; Gannon, 2007). The science of

complex systems tackles this challenge, albeit from a different perspective. It adds the

idea that “universal principles” could exist, which would allow for the prediction of the

organization of the whole regardless of the nature of the microscopic entities. Ludwig

Von Bertalanffy wrote already in 1968: “It seems legitimate to ask for a theory, not of

systems of a more or less special kind, but of universal principles applying to systems

in general ” (Von Bertallanffy, 1976). This dream of universality is still active: “[Com-

plex networks science] suggests that nature has some universal organizational principles

that might finally allow us to formulate a general theory of complex systems ” (Solé,

2000). Have such universal principles been discovered? Could they link disciplines such

as sociology, biology, physics and computer science, which are very different in both

methodology and objects of inquiry (SantaFe, 2010)?

109
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Table 5.1: The 20 references (including books and articles) and 20 journals
most cited by the 141 098 articles of our database

Reference Times used Journal Times used
Albert R,2002,REV MOD PHYS(74) 2058 NATURE 115648
Watts DJ,1998,NATURE(393) 1735 SCIENCE 104838
Barabasi AL,1999,SCIENCE(286) 1697 J BIOL CHEM 103428
Newman MEJ,2003,SIAM REV(45) 1309 P NATL ACAD SCI USA 102289
Bak P,1987,PHYS REV LETT(147) 1172 PHYS REV LETT 68093
Strogatz SH,2001,NATURE(410) ,909 J AM CHEM SOC 58387
Sambrook J,1989,MOL CLONING LAB MANU(3) 855 CELL 57810
Bak P,1988,PHYS REV A(38) 751 J NEUROSCI 34283
Laemmli UK,1970,NATURE(227) 721 EMBO J 34264
Dorogovtsev SN,2002,ADV PHYS(51) 689 MOL CELL BIOL 33889
Albert R,2000,NATURE(406) 686 PHYS REV B 30212
Kohonen T,1982,BIOL CYBERN(44) 643 GENE DEV 27122
Pastorsatorras R,2001,PHYS REV LETT(87) 621 J CELL BIOL 27096
Goldberg DE,1989,GENETIC ALGORITHMS S 613 JCHEM PHYS 26974
Rumelhart DE,1986,PARALLEL DISTRIBUTED(1) 587 J IMMUNOL 24636
Newman MEJ,2001,PHYS REV E 2(64) 572 ANGEW CHEM INT EDIT 22161
Kohonen T,1995,SELF ORG MAPS 553 MACROMOLECULES 22151
Bradford MM,1976,ANAL BIOCHEM(72) 541 APPL PHYS LETT 19669
Haykin S,1999,NEURAL NETWORKS COMP 509 BIOCHEMISTRY-US 19597
Jeong H,2000,NATURE(407) 508 J NEUROPHYSIOL 18690

5.2 Results

In this chapter, we empirically study the “complex systems” field and its claims to

universality. To collect a representative database of articles, we selected from the ISI

Web of knowledge (WoS, 2011) all records containing topic keywords relevant for the

field of complex systems (refer to Table 5.5 for the precise query. In this chapter,

we limit ourselves to papers published after 2000). Table 5.1 contains the 20 most

frequent cited references and journals within our dataset. To analyze the data, we build

a network (Börner & Schernhost, 2009) in which the ∼ 141 000 articles are the nodes.

These nodes are linked according to the proportion of shared references (bibliographic

coupling Kessler, 1963). For this study, bibliographic coupling offers two advantages over

the more usual co-citation link: it offers a faithful representation of the fields, giving

equal weight to all published papers (whether cited or not) and it can be applied to

recent papers (which have not yet been cited). For more details, the reader is referred

to the section “Methods”.

Figure 5.1 shows the largest communities (thereafter also called “fields” or “disci-

plines”) obtained by modularity maximization of the network of papers published in

the years 2000-2008. We first note that all important complex systems subfields1 are

1In the following, we use italics to refer to the names of the communities.
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present2. At the center, we find mostly theoretical domains: self-organized criticality,

dynamical systems, complex networks, neural networks. These fields are connected to

more experimental communities lying at the edges (materials science, biology or neuro-

sciences). The links between theoretical and experimental fields suggest that complex

systems science models have connections to the “real” world, as claimed by their prac-

titioners.

Figure 5.1: Community structure obtained with a first run of the modularity
maximization (Blondel et al, 2008) on the 2000-2008 network (141,098 arti-
cles). The surface of a community I is proportional to its number of articles NI and
the width of the link between two communities I and J is proportional to the mean
bibliographic coupling 〈ω〉IJ =

∑
i∈I,j∈J ωij/NI NJ . The layout of the graph is obtained

thanks to a spring-based algorithm implemented in the Gephi visualization software
(Bastian et al , 2009). For the sake of clarity, communities with less than 300 articles
are not displayed. The label of a community represents the most frequent and/or signif-
icant keyword of its articles. CN stands for Complex Networks, SOC for Self Organized
Criticality, DS for Dynamical Systems, DigitCom for Digital Communication and Sur-
faceSO for Self-organization on Surfaces. EMC is a more composite community where
the three most representative keywords are Ecology, Management and Computational
Models. See Figure 5.2 for details.

2As can be checked by consulting authoritative CS web sites such as Santa
Fe’s and its “Exploring complexity” lectures: http://www.santafe.edu/news/item/

exporing-complexity-science-and-technology-santa-fe-institute-perspective/ (accessed
June 1st, 2010).
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To understand the inner structure of these large communities, we use recursive mod-

ularity optimization (see Fortunato & Barthélemy (2007) and “Methods”). Most fields

display a rich inner structure (Figure 5.2) with subcommunities (thereafter also called

“subfields” or “subdisciplines”) organized around several specific topics and references.

The only exceptions are self-organized criticality and complex networks, where all arti-

cles cohere around a few references. Table 5.2 displays some quantitative informations

about each subfield. For a more detailed presentation of the subfields, including their

main authors, most used journals, references and keywords, see Appendix C. We analyze

this complex structure at two levels. First, at the global scale, complex systems science

appears to be a densely interconnected network. This is somewhat surprising since shar-

ing references between subdisciplines means that they are able to read and understand

these references, and moreover, that they find them useful. Would these shared refer-

ences point to “universal” principles? Second, we focus on a more local scale, on the

links that specifically connect two different disciplines (ie two different colors in Figure

5.1) to understand how they manage to exchange knowledge.

5.2.1 Complex systems’ science overall coherence

Let us start with the field’s overall coherence. We have looked for the references cited

by many subfields and form the “glue” that links many subdisciplines and connects the

network. More precisely, we define the networking force of a reference N (r) as the sum,

over all pairs of subfields, of the proportion of their links explained by that reference

(see Methods). Table 5.3 shows that the references that glue the network are more

methodological than theoretical: the most networking reference is “Numerical Recipes”

(Press et al, 2010), a series of books that gathers many routines for various numerical

calculations and their implementation in computers. Most of the other linking references

are mathematical handbooks or data analysis tools. If one looks for universality in the

complex systems field, the computer – as a tool – seems to be a serious candidate.

Among the leading contributors to the glue, we also find several references on self-

organization (SO). Self-organization is not a predictive theory, but an approach that

focuses on the spontaneous emergence of large-scale structures out of local interactions

between the system’s subunits (Mehdi et al, 2009). Several subdisciplines in Figure

5.2 can be related to this approach, as they use a keyword akin to “self-organization”

(SO) in more than 10% of their articles (for a more complete list of the communities

using this keyword, see appendix C). Among theses we find swarm SO, molecular SO

linking chemistry to biology, growth SO and pattern formation SO linking surface science

to dynamical systems. This suggests that the field of complex systems focuses on the
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cases in which the link from microscopic to macroscopic can be analyzed through self-

organization, which gave rise to several fruitful scientific programs, as we discuss below

(section Discussion).
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Figure 5.2: Community structure obtained with a second run of the modularity maximization on the 2000-2008
network. This community structure is obtained by optimizing the internal modularity Qi of each community obtained by
the first run of the modularity maximization algorithm on the 2000-2008 network, displayed on Figure 5.1 (See Methods for
details on the procedure). The surface of each community is proportional to its number of articles and the width of the link
between two communities I and J is proportional to the mean weight 〈ω〉IJ . For the sake of clarity, communities with less
than 300 articles and links with a mean weight 〈ω〉IJ less than 2.10−5 are not displayed. The color of a community (see
online) corresponds to the color of the field (Fig 5.1) it belongs to. Community labels are based on a frequency analysis of the
keywords. For a detailed presentation of the subfields, including their authors, most used journals, references and keywords,
see Appendix B.
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Table 5.2: 2000-2008 subfields’ sizes N and inner coherences < ωin >
−1 The acronyms and abbreviations in parenthesis

correspond to the label of the subfields displayed on Fig 5.2. The opposite of the average of the inner links’s weight of a
subfield < ωin >

−1 is (the opposite of ) an inner coherence measure that support a straightforward interpretation. Indeed, if
the weights of the inner links of a subfield were homogeneously distributed between all pairs of articles, two articles randomly
chosen of this subfield would share 1 reference over < ω >−1.

Subfield N < ω >−1

Analytic Chemistry (AnalyticChem) 419 336.14
Angiogenesis (Angiogen) 3642 1408.78
Apoptosis (Apopt) 2632 1424.23
Attractors 1161 524.42
Bacterial Genomics (BactGen) 1517 120.19
Brain Chaos 1175 70.06
Calibration (Calib) 538 371.17
Cellular Automata(CA) 846 164.26 .0023
Cellular Neural Networks (CellularNN) 620 86.17
Chaos 3134 531.3
ClimateChaos 352 205.31
Complex Fluids (CFluid) 2310 994.14
Complex Networks (CN) 3684 21.87
Computationnal Complexity (ComputCompl) 1134 379.92
Computationnal Systems Biology (CSB) 1799 323.99
Computer 526 437.08
Condensed Matter (CondMatt) 2629 631.99
Condensed Matter - Polymers (CondPolymers) 471 131.85
Control 4772 1086.35
Crystal Structure (CrystalStruct) 3386 350.41
Cytoskeleton Self-Organization(CytoskSO) 651 132.58
Deformation 590 432.48
Diabetes 1015 669.24
Digital Communication (DigitCom) 3811 470.56
Ecology 4751 1846.16
Econophysics (Econophys) 738 96.12
Electrocardiogram (ECG) 987 117.68
Endocrinology (Endocrino) 1223 607.63
Energy Transfert (EnergyTransf) 801 258.27
Epigenomics 3055 677.49
Epilepsy 316 273.67
Evolution 1318 796.76
Fractals 1015 192.02
Functionnal MRI (fMRI) 2634 897.28
Functionnal Neurosciences (fNS) 935 497.44
Genetic Algorithm (GenAlgo) 2177 197.96
Genetic Diseases (GenDiseases) 2273 387.34
Growth Self-Organization (GrowthSO) 1192 113.84
Hemodynamics (Hemodyn) 346 344.37
Immunology (Immuno) 4403 2234.66

Subfield N < ω >−1

In Vitro Fertilization (IVF) 591 281.01
Kolmogorov Complexity (K-Comp) 501 121.94
Malaria 2702 747.44
Management (Managt) 3563 2159.31
Mitosis 3171 564.98
Molecular Self-Organization (MolecularSO) 2684 409.08
Multi-agent System (MAS) 1787 1094.91
Nanofabrication (NanoFabr) 457 45.28
Nanosciences (Nano) 1995 418.01
Neural Networks (NN) 2902 221.15
Neural Synchronization (NeuralSynchr) 1451 453.59
Organic Chemistry (OrgChem) 649 368.67
Pattern Formation (PattForm) 1403 205.82
Pattern Formation & Self-Organization (PattformSO) 691 142.82
Petri Nets 957 275.76
Photosynthesis (PhSynth) 2000 224.48
Plasticity 1066 915.05
Polimerization (Polymeriz) 645 98.54
Protein Structure (ProteinStruct) 1830 237.07
Protein Transport (ProteinTransp) 1305 308.77
Quantum Chaos (QChaos) 1456 636.22
Quantum Dots (QDots) 921 130.93
Reinforcement Learning (RLearning) 891 287.57
Respiration Rhythm 416 57.35
Self-Organized Criticality (SOC) 4447 199.3
Self-Organizing Maps(SOM) 3495 168.85
Social Cognition Therory (SocialCognTheor) 800 680.59
Sorption 1354 925.37
Support Vector Machines(SVM) 3660 867.91
Surface Self-Organization (SurfSO) 1511 468.34
Swarm Intelligence (SwarmIntel) 608 145.94
Synaptic Plasticity (SynPlasticity) 1625 370.25
Transcriptomics (Transcrip) 2043 439.37
Transcriptomics Data Analysis (TDA) 628 43.32
Transmission Control Protocol (TCP) 1473 718.93
Tuberous Sclerosis (TubScler) 766 153.33
Turbulent Flow (TurbFlow) 3172 1212.32
Visual Cortex Model 2851 845.22
VocalLearning 389 162.56
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5.2.2 Interdisciplinary trading zones

At a more local scale, let us now look at the links that specifically connect two distinct

disciplines. How are those connections established? It is widely accepted that scientific

disciplines cannot easily communicate or be linked (in our case, share references) simply

because it is difficult for a physicist to understand a biology paper and vice-versa. In

addition, different disciplines have different definitions of what counts as a result or as

an interesting research topic. For example, physical sciences look for universal laws,

while social (Borgatti et al, 2009) and biological (Fox-Keller, 2005) sciences emphasize

the variations in structure across different groups or contexts and use these differences to

explain differences in outcomes. Physicians are interested in practical medical advances

while physicists want to know whether physiological rhythms are chaotic or not (Glass,

2001).

Where do the links come from then? In an illuminating analogy, Peter Galison

(1997) compares the difficulty of connecting scientific disciplines to the difficulty of

communicating between different languages. History of language has shown that when

two cultures are strongly motivated to communicate - generally for commercial reasons

- they develop simplified languages that allow for simple forms of interaction. At first,

a “foreigner talk” develops, which becomes a “pidgin” when social uses consolidate this

language. In rare cases, the “trading zone” stabilizes and the expanded pidgin becomes

a creole, initiating the development of an original, autonomous culture. Analogously,

biologists may create a simplified and partial version of their discipline for interested

physicists, which may develop to a full-blown new discipline such as biophysics. Specifi-

cally, Galison (1997) has studied how Monte Carlo simulations developed in the postwar

period as a trading language between theorists, experimentalists, instrument makers,

chemists and mechanical engineers. Our interest in the concept of a trading zone is to

allow us to explore the dynamics of the interdisciplinary interaction instead of ending

analysis by reference to a “symbiosis” or “collaboration”.

Table 5.4 gives a list of the main “trading zones” which connect theoretical and

experimental fields in Figure 5.1 and capture a significant fraction of the links between

these fields. The clearest example is transcriptomics data analysis, a subfield of neu-

ral networks which connects biologists interested in the interpretation of data retrieved

from DNA chips and computer scientists interested in data analysis via methods from

the neural networks field. The transcriptomics data analysis subfield represents 2.3% of

neural networks papers but accounts for 46.3% of the connections between neural net-

works and biology and 16.5% of the links between neural networks and complex networks.

Other trading zones are computational systems biology, linking biology to many theoret-
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Table 5.3: The 20 most networking references in the 2000-2008 decade. The
references followed by a star correspond to books or papers which appeared in the
database under several forms - essentially different publication years for the books - for
which the networking power N (r) have been summed. The complete references of these
papers are given in Appendix B.

Reference Topic N (r) (%)

Press et al. (1992)* Numerical recipes (book) 1.250
Shannon (1948)* Information theory 0.607
Metropolis et al. (1953) Monte Carlo integration 0.509
Nicolis et al. (1977)* Self organization (book) 0.420
Kauffman (1993)* Self organization (book) 0.309
Hebb (1949) Neuropsychology and behavior (book) 0.297
Alberts et al. (1994) Molecular and cellular biology (book) 0.288
Abramowitz et al. (1968)* Handbook of mathematical functions 0.269
Feller (1958)* Introduction to probability theory (book) 0.268
Watson & Crick (1953) Structure of DNA 0.250
Lakowicz (1999) Fluorescence spectroscopy 0.249
Turing (1952) Morphogenesis 0.237
Witten et al. (1981) Diffusion-limited aggregation 0.234
Cohen (1988) Statistics and behavioral sciences (book) 0.223
Hopfield (1982) Neural networks 0.217
Stanley (1971) Phase transition (book) 0.202
Whitesides et al. (2002) Self-assembly 0.188
Marquardt (1963) Applied mathematics 0.174
Chomczynski (1987) RNA isolation 0.167
Venter et al. (2001) Human genome sequence 0.160

ical fields, among which dynamical systems, self-organized criticality and complex net-

works, neural synchronization linking dynamical systems and neurosciences, cytoskeleton

self-organization linking biology to dynamical systems and self-organized criticality and

calibration linking neural networks and material sciences. Note that a single trading

zone can be used by a fields to exchange with several other fields, as long as these other

fields share the same “language”. For example, computational systems biology, links

biology to dynamical systems, self-organized criticality and complex networks, three sub-

fields which share the physicists’ toolkit. Since our map cannot cover all scientific fields,

we may not recognize some subfields as trading zones, such as electrocardiogram which

is likely to connect dynamical systems to medecine, or even miss a trading zone between

geosciences and self-organized criticality.
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Figure 5.3: Local “networking” force for four different references on the 2000-
2008 network (Fig 5.2). Links established using the reference are shown in color.
The number of citations corresponds to those included in papers of our database pub-
lished between 2000 and 2008. References used: a. Albert & Barabasi (2002) (2058
citations) b. Press et al (2010), Numerical Recipes - all editions (1267 citations) c.
Nicolis & Prigogine (1977) (342 citations) d. Barábasi & Oltvai (2004) (244 citations).

By analyzing carefully the references used by trading zones and also the references

that make the links between the trading zones and their neighbors, we can distinguish

two types of trading zones, applicative and speculative. Let us start with transcriptomics

data analysis, which is a clear example of “applicative” trading zone. The development

of new measurement techniques in cellular biology (mainly DNA microarrays) produced

huge amounts of data together with the need of new tools to analyze them. Since this

new technique promised a better understanding of cell dynamics, a new scientific sub-

discipline, able to understand data analysis and its biological interest was built around

transcriptomic tools. The two references most used by this subfield stress the applica-

tive side: the purpose of the first paper is “to describe a system of cluster analysis
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Table 5.4: Strongest trading zones. The trading force T of a subcommunity mea-
sures the fraction of the links between two fields (in Fig. 5.1) which goes through this
subcommunity. More precisely, the trading force of I, a subcommunity of Ī, towards
any community J̄ is the total weight of the article-article links between the subcom-
munity I and community J̄ , normalized by the total weight of the the article-article
links between Ī and J̄ : TĪJ̄(I) =

∑
i∈I,j∈J̄ ωij/

∑
i∈Ī,j∈J̄ ωij . The expected force T exp is

the value of the trading force one would expect if all the links between Ī and outside
communities were equally shared among all sub-communities of Ī, which is simply the
fraction NI/NĪ of articles of I in Ī. The acronyms of the subfiels used here correspond
to those explained in Table 5.2.

Subfield Fields T (%) T/T exp

TDA Biology/Neural Networks 46.355 20.51
CSB Biology/Dynamical Systems 49.704 8.87
CSB Biology/SOC 49.255 8.79
ProteinStruct Biology/Material Sciences 47.442 8.32
CSB Biology/CN 42.931 7.66
TDA CN/Neural Networks 16.543 7.32
Hemodyn Neurosciences/FluidMech 54.552 7.22
NeuralSynchr Neurosciences/Dynamical Systems 59.788 5.20
Hemodyn Biology/FluidMech 39.113 5.18
CytoskSO Biology/SOC 9.561 4.71
CytoskSO Biology/Dynamical Systems 9.522 4.69
Calib Material Sciences/Neural Networks 8.717 4.51
CellularNN CN/Neural Networks 9.605 4.30
Transcrip Biology/CN 25.806 4.05

for genome-wide expression data from DNA microarray hybridization [. . . ] in a form

intuitive for biologists” (Eisen et al, 1998) while the second “describes the application

of self-organizing maps for recognizing and classifying features in complex, multidimen-

sional [transcriptomic] data” (Tamayo et al, 1999). The transcriptomics data analysis

papers are clustered together because they share references presenting this kind of appli-

cations. The applicative character of transcriptomics data analysis can also be seen in the

origin of the references that link them to neighbor subfields (Figure 5.4). The common

references between transcriptomics data analysis and biology (mainly transcriptomics)

are similar to references used by transcriptomics data analysis papers themselves. This

means that the link arises from biologists citing results obtained by transcriptomics data

analysis scientists or techniques they use. On the other hand, the common references

between transcriptomics data analysis and self-organizing maps (a subfield of neural net-
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Figure 5.4: Directed network. On this subset of the graph presented in Figure 5.2,
the arrows are directed to the subfield that uses the other subfield’s references to estab-
lish the link. More precisely, the common references shared by two linked subfields are
more similar to the internal references of the subfield from which the arrow originates
than to the internal references of the subfield to which the arrow points (see “Meth-
ods” for more details). The figure shows that transcriptional data analysis (TDA) feeds
from self-organizing maps (SOM) and neural networks (NN) methodological references,
while biology subcommunities (mainly Transcriptomics) use transcriptional data analy-
sis references. The orientation of the links is quite different for computational systems
biology (CSB) and complex networks (CN), because these subfields tend to pump their
neighbors’ references, while the other subfields do not find much use in computational
systems biology and complex networks references.

works) are similar to references used by self-organizing maps papers. This means that

the link arises from transcriptomics data analysis scientists citing classification tech-

niques created by self-organizing maps scientists, while these scientists do not often use

transcriptomics data analysis references. Therefore, transcriptomics data analysis allows

self-organizing maps techniques to be understood and used to interpret biological data,

with a relevance certified by biologists’ citations. The case of another trading zone, com-

putational systems biology, is different. Its most used references point to computational

methods - mainly Gillespie’s algorithm (Gillespie, 1977) or to experimental papers in

which there is no explicit modelling but that show complex cellular dynamics, thus jus-

tifying indirectly the need for modelling. The link between experiments and modelling
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is still speculative, as summarized by one of the most used references in this subfield

(Tyson et al, 2010): “we hope that this review will [...] promote closer collaboration

between experimental and computational biologists.” Moreover, the common references

between computational systems biology and biology are from biology, as if computational

systems biology scientists were eager to quote potentially interesting biological applica-

tions for their modelling approach, while many biologists were still unaware of these

models. In short, compared to transcriptomics data analysis, computational systems

biology seems a more speculative trading zone, at the frontier of biology and modelling,

but presently lacking a specific object or concept to define an operational trading zone.

5.3 Complex Systems’s relation to the overall scientific lit-

erature

To explore the question of the relation of CSS to the overall science, we present two pre-

liminary maps displaying the communities obtained from a database containing records

of the overall French scientific literature of 2000 and 2010 (as obtained from the Web of

Science). We try to point out the place of CSS in these overall maps. We have gathered

the records of the 63840 articles published in 2000 and the 78058 articles published in

2010 containing a french address from the ISI Web of Knowledge database (WoS, 2011,

query performed in March 2011 ). We present in this section the two preliminary maps

of the state of French research in 2000 and 2010, obtained once again by computing

the bibliographic weight between articles and detecting the communities thanks to the

Louvain algorithm.

These two maps show an overall division of the science literature in less than a

dozen main fields (here represented by colors), with a clear separation between biology,

medicine and neuroscience (on the left hand side) and chemistry, mathematics, physics

and computer science (on the right hand side).

While these maps are very interesting in many ways, it should be noted that they

do not contain any “complex systems” subfield, although we can find a Self-Organized

Criticality (SOC) community on the 2000 map (middle right hand side) and a Complex

Networks (CN) community on the 2010 map (middle right hand side). These maps sug-

gest that there exists (yet?) no conceptual kernel for “complexity science”, some unified

theory that could give the field enough coherence to be a subfield identifiable by shared

references (and therefore by bibliographic coupling). Self-Organization, Self-Organized

Criticality or Complex Networks do constitute such coherent subfields. However, despite

some claims, these subfields seem to have only weak links to the rest of the complex
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systems “galaxy” shown above, which prevents the formation of a coherent “complex

systems science”.

5.4 Discussion

Our empirical study of the “complex systems” field shows that its overall coherence

does not arise from a universal theory but from computational techniques and successful

adaptations of the idea of self-organization. The computer is important for advancing

the understanding of complex systems because it allows scientists to play with simple

but nonlinear models and to handle large sets of data obtained from complex systems.

The essential role of the computer is confirmed by historical studies showing (Fox-Keller,

2009) that the complex systems field is heir of the postwar sciences born around the

computer: operational research, game theory and cybernetics. These fields started

when physicists, mathematicians and engineers started collaborating to maximize the

efficiency of WW II military operations (Pickering, 1995; Bowker, 1993).

Let’s now examine the various claims to universality. A “general systems theory”

would possess a collection of theoretical books or papers revealing the “universal” ex-

planation. This would be evidenced in Figure 5.2 by a central group to which other

groups would connect. Instead, our analysis shows a variety of modelling disciplines in a

central position. Certainly, a few theoretical papers, such as Bak’s (Bak et al, 1987) (in

self-organized criticality) or Albert and Barabasi’s (Albert & Barabasi, 2002) (in com-

plex networks) point to “universal” mechanisms and are heavily cited. However, more

than 80% of their citations arise from modelers themselves 3, suggesting that they may

be universal... for theorists. Our data support the local character of these “universal”

laws. First, Albert and Barabasi’s (Albert & Barabasi, 2002) paper is the most cited

in the 2000-2008 decade but only links complex networks and self-organized criticality

subfields (Figure 5.3a). The contrast with the global networking achieved by method-

ological references such as Metropolis’ algorithm or Numerical Recipes (Figure 5.3b) or

self-organization references (Figure 5.3c) is clear. Second, the references that complex

networks (Figure 5.4) and self-organized criticality communities share with experimental

3Counted on Web of Science (January 28th 2011) by analyzing the citing papers by discipline. Specif-
ically, “Subject Areas” (Web of Science name for subdisciplines) related to Physics (such as Physics
Multidisciplinary or Physics Mathematical) account for 2272 out of 3158 citations (72%) for Bak’s pa-
per (Bak et al, 1987) while more “applied” subject areas (such as Geosciences and Applied mathematics)
account for 676 citations (21%). Subject areas related to Physics or Mathematics account for 4201 out
of 5281 citations (80%) of Albert and Barabasi’s paper (Albert & Barabasi, 2002), while subject areas
related to biology or more applied fields account for 1060 citations (20%). Instead, areas related to biol-
ogy account for most of citations to Barabási and Oltvai’s introduction of network theory to biologists
(Barábasi & Oltvai, 2004).
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Figure 5.5: 2000’s french research subfield community networks. The surface of a community I is proportional to its
number of articles NI and the width of the link between two communities I and J is proportional to the mean bibliographic
coupling ωIJ =

∑
i∈I, j∈J ωij/NI NJ . For the sake of clarity, communities with less than 40 articles and links with a mean

weight ω < 2.10−5 are not displayed. Labels are based on a frequency analysis.
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Figure 5.6: 2010’s french research subfield community networks. The surface of a community I is proportional to its
number of articles NI and the width of the link between two communities I and J is proportional to the mean bibliographic
coupling ωIJ =

∑
i∈I, j∈J ωij/NI NJ . For the sake of clarity, communities with less than 40 articles and links with a mean

weight ω < 2.10−5 are not displayed. Labels are based on a frequency analysis.
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fields are similar to those of the experimental fields. This means that the links be-

tween these modelling practices and their potential applications are mostly rhetorical:

complex networks and self-organized criticality papers often quote experimental work as

legitimating their models, while experimentalists rarely refer to them. To try to become

universal, theoretical approaches have to be “translated” into other disciplines. An ex-

ample of this strategy is shown in Figure 5.3d which shows the links established between

network science and biology thanks to Barabasi and Oltvai’s introduction of networks

for biologists (Barábasi & Oltvai, 2004).

It could be argued that links between these theories and experimental fields take

time to establish and will be seen in the future. An interesting insight of the possible

evolution of universality claims is given by the history of self-organization, which was

considered by many as a universal key to Nature in the 1980’s (Fox-Keller, 2009). This

idea was fecund in that it gave birth to several active subdisciplines (cytoskeleton SO,

growth SO...) (Figure 5.2). However, it should be noticed that these heirs of self-

organization are nowadays almost unrelated. The different self-organization subfields are

more linked to their own discipline (biology, materials science . . . ) than between them.

This is shown by the plain fact that community detection puts these SO subfields into

different disciplines (different colors in Figure 5.2) instead of creating a single, unified,

self-organization field. The reason is that these subfields use widely different references,

as illustrated by the fact that there is no common reference among the 10 most used

references for all the different self-organization subcommunities. Self-organization is

therefore not a universal explanation but rather a kind of banner, which needs to be

associated to references to specific elements (including techniques, microscopic entities

and their interactions) to be fruitful.

In summary, we have obtained a global point of view on the structure of the “complex

systems” field. This has allowed us to test empirically the idea of universality, showing

that it remains a dream, albeit one which has lead to interesting but more modest

realities. At the global scale, the whole domain is linked by the focus on self-organization

and the use of computer-based methods for solving non-linear models. At a more local

scale, the links between different disciplines are achieved through the development of

“trading zones” (Galison, 1997). These allow for coordination between vastly different

scientific cultures, for example theoretical and experimental disciplines, which are only

marginally connected. These disciplines may differ on the very conception of what is

an interesting topic, but can work together around specific tools (a DNA microchip)

or concepts (a network). Today, these interdisciplinary collaborations are a key to
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essential scientific challenges such as the analysis of the massive amount of data recently

made available on biological and social systems (Lazer, 2009; Microsoft, 2006) and the

understanding of the complex intertwining of different levels of organization that is

characteristic of these systems.

5.5 Methods

5.5.1 Extraction of the data

Our data have been extracted from the ISI Web of Knowledge database (WoS, 2011)

in December 2008. The science of complex systems is particularly challenging as an

epistemic object since there exists no consensual definition of the domain, nor any list of

disciplines or journals that would gather all the relevant papers. Therefore, we selected

all the articles of the database whose title, abstract (for articles published after 1990)

or keywords contained at least one of a chosen list of topic keywords (Table 5.5). These

keywords were derived from discussions with experts of the field, mainly scientists work-

ing at the complex systems institute in Lyon (IXXI). We have retrieved 215 305 articles

(141 098 between 2000 and 2008) containing 4 050 318 distinct references. Each record

contains: authors, journal, year of publication, title, keywords (given by the authors

and/or ISI Web of Science) and the list of references of the article. Any choice of key-

words being potentially biased and partial, our strategy was to risk choosing too many

of them - thus bypassing the lack of precise definition of the “complex systems” field and

retrieving all its important subfields - and to trust the subsequent analysis to eliminate

irrelevant articles.

In fact, as shown in table 5.5, around 40% of the articles of the database comes

solely from the combination of keywords “complex*” and “control”. While most of those

articles were close to biology and not directly related to the field of complex systems,

we chose to keep them in order to test the robustness of our analysis. As shown below,

our strategy was successful, since most of these “irrelevant” articles are grouped into a

few communities (such as Apoptosis or Immunology) that lie at the network’s edges and

do not bias the results.

5.5.2 Links between articles

Weight of links between articles are calculated through their common references (bibli-

ographic coupling Kessler, 1963). We define a similarity between two articles i and j as

the cosine distance:
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ωij =
|Ri ∩Rj |√
|Ri| |Rj |

(5.1)

whereRi is the set of references of article i. By definition, ωij ∈ [0, 1], is equal to zero

when i and j do not share any reference and is equal to 1 when their sets of references

are identical. For this study, bibliographic coupling offers two advantages over the more

usual co-citation link: it offers a faithful representation of the fields, giving equal weight

to all published papers (whether cited or not) and it can be applied to recent papers

(which have not yet been cited). Moreover, the links are established on the basis of the

author’s own decisions (to include or not a given reference) rather than retrospectively

from other scientists’ citations. Thus, bibliographic coupling can be used to analyze the

community of research as it builds itself rather than as it is perceived by later scientists

that cite its publications.

5.5.3 Community detection and characterization

In order to structure this network into groups of cohesive articles, we partition the

set of papers by maximizing the modularity function. Given a partition of the nodes

of the network, the modularity is the number of edges inside clusters (as opposed to

crossing between clusters), minus the expected number of such edges if the network was

randomly conditioned on the degree of each node. Community structures often maximize

the modularity measure. We compute our partition using the algorithm presented in

Blondel et al (2008), which is designed to efficiently maximize the modularity function in

large networks. More precisely, we used the weighted modularity Q Girvan & Newman

(2004); Fortunato (2010), which is defined as Q =
∑

I qI , where the module qI of a

community I is given by

qI =
ΩII

Ω
−
(∑

J 6=I ΩIJ + 2ΩII

2Ω

)2

(5.2)

where

ΩII =
1

2

∑
i∈I, j∈I

ωij is the total weight of the links inside community I,

ΩIJ =
∑

i∈I, j∈J
ωij is the total weight of the links between communities I and J 6= I

Ω =
1

2

∑
i,j

ωij =
∑
(i,j)

ωij is the total weight of the links of the graph.
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Each module qI compares the relative weight of edges ΩII
Ω inside a community I with

the expected weight of edges
(∑

J 6=I ΩIJ+2ΩII

2Ω

)2
that one would find in community I if

the network were a random network with the same number of nodes and where each

node keeps its degree, but edges are otherwise randomly attached. See Ref Fortunato

& Barthélemy (2007) for a more explicit interpretation of the modularity, its properties

and limits.

Applying the Louvain algorithm yields a first partition of the network into com-

munities (also referred to as “fields” or “disciplines”, see Figure 5.1). To obtain the

substructure of these communities, we apply the Louvain algorithm a second time on

each of them. We find that most of these communities display a clear substructure

with high values of internal modularity Qi (typically between 0.4 and 0.8). Only two

of them (self-organized criticality and complex networks) are strongly bound around a

few references and present much lower values of Qi (typically less than or around 0.2).

Consequently they were not split into subfields which would not have much scientific

relevance.

This recursive modularity optimization leads us to a “subfield” graph (Figure 5.2).

We have checked that all the obtained sub-communities satisfy the criterion (qI ≥ 0)

proposed by Fortunato & Barthélemy (2007) to check their relevance (see Table 5.2).

5.5.4 Links between communities and their orientation

The link between two communities I and J can be quantified by the average distance

between an article i ∈ I and an article j ∈ J :

< w >−1
IJ =< wij >

−1
i∈I,j∈J = (ΩIJ/NI NJ)−1 (5.3)

A link between a community I and a community J exists if at least one reference

is shared between an article of I and an article of J . To analyze the scientific content

conveyed by the link, it is important to know if the shared references are more similar

to the references used by community I or to the references used by community J . To

take into account this similarity, we define the orientation of a community-community

link in the following way.

Let nr,I be the number of papers of community I using reference r. Then,

• the number of article-article links inside community I which use reference r is

Lr,II = nr,I (nr,I − 1)/2

• the number of article-article links between communities I and J which use reference
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r is Lr,IJ = nr,Inr,J

We compare the set of references shared by the two communities I and J to the

references used by I and J by computing the cosine similarity measures:

cosII,IJ =

∑
r Lr,IILr,IJ√∑
r L

2
r,II

∑
r L

2
r,IJ

comparing the shared refs to those of I

cosJJ,IJ =

∑
r Lr,JJLr,IJ√∑
r L

2
r,JJ

∑
r L

2
r,IJ

comparing the shared refs to those of J

For example, if cosII,IJ < cosJJ,IJ , the shared references are more similar to the

references binding community J than to the references binding community I. We then

direct the link from community J to community I, as community I “pumps” community

J references to establish the link. See Figure 5.4 for examples of link orientation.

5.5.5 Networking power of references

To understand which references link the different subdisciplines to form a connected

network, we define the “glue” as the set of references shared between subfields. To give

equal weight to all these links, we normalize each link to 1, leading to the normalized

networking strength N (r) of reference r as:

N (r) =
1

Z

∑
I 6=J

fIJ(r) (5.4)

where fIJ(r) is the fraction of links between an article of community I and an article of

community J in which reference r is used and where Z is a normalization constant such

that
∑

rN (r) = 1. The normalization ensures that N (r) represents the proportion of

all the links of the complex systems field that can be assigned to reference r.
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Table 5.5: Topic keywords used in our request in the ISI Web of Knowledge
database and number of articles matching independently to each of these
topic keywords. Each topic keywords except the first six where coupled with the topic
keywords “complex*”. We moreover rejected the articles containing the topic keywords
“complex scaling” or “linear search”, two terms refering respectively to (heavily used)
specific methods of quantum chemistry and computer science.

topic keywords Results

“self organ*” 32484
“complex network*” 6953
“dynamical system” 8205
“econophysics” 633
“strange attractor” 769
“synergetics” 379

“adaptive system*” 1141
“artificial intelligence” 1812
“attractor” 1034
“bifurcation” 3164
“chaos“ 5370
“control“ 116017
“criticality” 980
“ecology” 5869
“economics” 2243
“epistemology” 345
“far from equilibrium” 253
“feedback” 12881
“fractal” 3867
“ising” 975
“multi agent” 2032
“multiagent” 665
“multi scale” 779

topic keywords Results

“multifractal” 390
“multiscale” 1439
“neural network*” 12747
(“non linear*” OR “nonlinear*”)

NOT “equation*” 10240
“non linear dynamic*” 560
“non linear system*” 391
“nonlinear dynamic*” 2285
“nonlinear system*” 1826
“phase transition” 5503
“plasticity” 6667
“random walk” 758
“robustness” 6498
“scaling” 7008
“social system*” 586
“spin glass*” 643
“stability” AND (“lyapunov” OR

“non linear*” OR “nonlinear*”) 1399
“stochastic” 9184
“synchronization” 4645
“turbulence” 4602
“universality” 861
“cell* automat*” 1659



Chapter 6

Mapping Science Institutions: the
case of ENS de Lyon

6.1 Introduction

Scientometrics has proved a valuable tool to understand the organization of scientific

fields (Small, 1999) and their evolution (Chavalarias & Cointet, 2009; Mogoutov &

Kahane, 2007). Global science maps (Small, 1999; Klavans & Boyack, 2009; Small, 1973;

Börner & Schernhost, 2009; Leydesdorff & Rafols, 2009; Rafols & Leydesdorff, 2010;

Agarwal & Skupin, 2008) have become feasible recently, offering a tentative overall view

of scientific fields and fostering dreams of a “science of science” (Börner & Schernhost,

2009). In this article, we propose a more modest but less explored mapping, that of single

scientific institutions. The scope is to achieve a global point of view on the institutions

that no individual can have, in order to understand their organization, their strong and

weak points, the papers or authors that link different Departments or disciplines... Such

maps may become important as policy tools as few directors have such a global view of

their institution.

Recently, Rafols and Leydesdorff have suggested a simple way to picture the dis-

ciplinary weight of an institution (Rafols & Leydesdorff, 2010). This method is rapid

and can be carried out online. As it uses Web of Science (WoS, 2011) “subject cate-

gories” as relevant subdisciplines to project the data, it has the advantage of enabling a

comparison across different institutions or years. The drawback of this rigid projection

skeleton is that it preselects, without local information, the relevant communities. As

acknowledged by Rafols and Leydesdorf (Rafols & Leydesdorff, 2010): “The two char-

acteristics that make overlay maps so useful for comparison, their fixed positional and

131
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cognitive categories, are also inevitably, their major limitations and a possible source

of misreadings. Since the position in the map is only given by the attribution in the

disciplinary classification, it does not say anything about the direct linkages between

the nodes.”

Here we propose different ways of mapping scientific institutions based on the articles

published with that address (and not the journals as in Rafols & Leydesdorff (2010)).

We do not propose a real methodological innovation, but rather a toolbox that allows to

draw, in a few hours, several maps of the chosen scientific institution. More specifically,

we show four different ways of mapping our institution, ENS de Lyon, and show how

each of these gives different information. Our scope is to display - in an accessible (but

not too simplistic) way - the institution’s complexity thus helping to generate discus-

sions on its policy among its scientists.

6.2 Methodology

6.2.1 Data Extraction

The “Ecole normale supérieure de Lyon” (ENS de Lyon), focused on Natural sciences,

was created in Lyon in 1987 after a move from Saint-Cloud in the suburbs of Paris.

In 2010, it merged with the “Social and Human Sciences” Ecole Normale Supérieure.

Today, it gathers 350 researchers, 270 professors, 390 administrative and technical per-

sonnel and a budget of more than 110 million Euros. A simple query (performed in

January 2011) in the ISI Web of Knowledge database (WoS, 2011) yields 7584 papers

containing an ENS de Lyon address (mostly under the form “Ecole Normal Super Lyon”,

but also “ENS-LYON” and “ENS de Lyon”). We save the “Full records” of all these ar-

ticles, the records containing authors, journal, year of publication, title, keywords (given

by the authors and/or ISI Web of Science), subjects, addresses (institutions, cities and

countries), and the list of references of the articles. It is well-known that Social and

Human sciences (especially French ones) are not well represented in Web of Science.

Therefore, our maps mainly deal with the natural sciences at ENS de Lyon.

Records are parsed and gathered in MySQL tables, which renders the handling of

the data more straightforward. Simple frequency analysis of the records allows to a get

a first global representation of the institution. Our method uses the relations present in

the data (Börner et al, 2003) to display different perspectives on the inner structure of

an institution.
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6.2.2 Bibliographic coupling

Links between articles are calculated through their common references. The biblio-

graphic coupling similarity between two articles i and j is defined as Kessler (1963):

ωij =
|Ri ∩Rj |√
|Ri| |Rj |

(6.1)

where Ri is the set of references of article i.

In comparison to co-citation link (which is the more usually used measure of articles

similarity), bibliographic coupling (BC) offers two advantages: it allows to map recent

papers (which have not yet been cited) and since it deals with all published papers

(whether cited or not), it represents “normal science”. The reason why weighted links

are used is that they reinforce the dense (in terms of links per article) regions of the BC

networks. This reinforcement facilitates the partition of the network into meaningful

groups of cohesive articles, or communities. A widely used criterion to measure the

quality of a partition is the modularity function Girvan & Newman (2004); Fortunato

& Barthélemy (2007), which is roughly is the number of edges inside communities (as

opposed to crossing between communities), minus the expected number of such edges

if the network were randomly produced. We compute the graph partition using the

efficient heuristic algorithm presented in Blondel et al (2008).

Applying the Louvain algorithm yields a partition of the network into communities

(see Figure 6.2). Simple frequency analysis then allows to characterise each community

through its more frequent items (keywords, authors, etc...). The significativity σ of the

presence of a given item into a community is computed by comparing its frequency f in

the community to its frequency f0 within the whole database. More precisely, we use

the normalized deviation

σ =
√
N

f − f0√
f0(1− f0)

(6.2)

where N is the total number of article in the database. The links between two

communities I and J can also be characterized qualitatively by analyzing their shared

references and quantitatively by computing the mean weight ωIJ =< ωij >i∈I, j∈J .

The final step in order to create a representation of the BC communities network is to

choose a visualization algorithm. We use the Gephi software Bastian et al (2009). Gephi

is a intuitive and interactive software allowing, in which force-directed layout algorithms

are implemented. These algorithms produce a graph by simulating the dynamics of the

network as if it were a physical system (the nodes being charged particles and the edges



CHAPTER 6. MAPPING SCIENCE INSTITUTIONS 134

springs). The simulation is run until the system comes to an equilibrium state.

Subject Prop of articles (%)

Biochemistry & Molecular Biology 8.25
Physics, Multidisciplinary 7.85
Computer Science, Theory & Methods 7.5
Mathematics 7.49
Geochemistry & Geophysics 7.34
Chemistry, Physical 6.41
Physics, Mathematical 6.18
Astronomy & Astrophysics 5.47
Mathematics, Applied 4.73
Cell Biology 4.43
Chemistry, Multidisciplinary 4.34
Physics, Condensed Matter 4.17
Physics, Atomic, Molecular & Chemical 3.9
Physics, Fluids & Plasmas 3.57
Genetics & Heredity 3.23

Table 6.1: Most frequent ENS de Lyon’s Subjects.

6.2.3 Copublication coupling

The data can also be analyzed through more common approaches, such as coauthoring or

co-keyword analysis (Börner et al, 2003). For this, a list of all items (authors, keywords,

addresses) are taken from the records to obtain the nodes of our maps, whose size are

proportional to the number of articles in which they appear. Two nodes (items) i and

j are linked whenever the number nij of articles in which they both appear is non-zero.

More specifically, we use weighted links, where the co-occurrence normalized weight is

chosen as

wij =
nij√
ni nj

(6.3)

The visualization step of the produced maps is once again achieved through Gephi

and its force-based layout algorithms.

6.2.4 Software available

We have developed a “Biblio Toolbox” which allows to draw the different maps presented

here in a few hours. The toolbox needs access to Web of Science database but otherwise



CHAPTER 6. MAPPING SCIENCE INSTITUTIONS 135

relies on OpenSource software. It is available at our website (http://www.sebastian-

grauwin.com/).

6.3 Gaining perspective on the ENS de Lyon

6.3.1 Statistical analysis

ENS de Lyon gathers a broad spectrum of scientific subjects (Table 6.1), mostly in

the natural sciences as discussed above. The institution has significantly grown over

the last 20 years, as shown by its increasing production of papers (Fig 6.1). Our data

gathers 12398 distinct authors, among which 952 have authored more than 5 papers.

By construction of the database, at least one author of each article is a member of ENS

de Lyon but this number also takes into account all the authors of the papers among

whom some may not be members of the ENS. ENS de Lyon collaborates with a broad

range of institutions of different countries as shown below.

Figure 6.1: Number of paper with an ENS de Lyon address published by year,
according to WoS, January 2011.
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6.3.2 Bibliographic Coupling communities map

Figure 6.2 shows the map obtained with bibliographic coupling of articles and their

grouping into “natural” subfields through modularity maximization. Each community

is characterized by its more frequent author and keyword. Table 6.2 displays an “ID

card” for the community labelled Hansen JP/Molec-Dynamics. This community gath-

ers physicists interested in the understanding of condensed matter using molecular dy-

namics simulations. The “ID Cards” of the other communities are available online on

http://www.sebastian-grauwin.com/.

What do we learn from this first map? First, note that the spatial organization of

the communities fits well with the scientific organization of ENS de Lyon in different de-

partments (different colors in Figure 6.2). This confirms that bibliographic coupling can

recover the scientific organization of institutions. Interestingly, the precise community

structure does not match the inner administrative/scientific subdivision of departments.

For example, the physics lab is administratively divided into four groups, while our map

distinguishes seven teams. This raises interesting questions on the structuration of the

groups and their interactions. Two physics’ communities (Oswald P/LiquidCrystals and

Peyrard M/DNA) belong to the “soft-matter and biological systems” group but our map

shows that they are quite distant, which means that they do not share many references.

The difference between the map and the physics lab organization is one example of the

discussions that our work can generate.

Another example is given by the overall spatial structure. Our map clearly places

physics at the scientific center of the ENS de Lyon, a fact that was used by its director

to suggest the importance of his lab within the institution. The question is then : how

much does this central position depend on the precise visualization algorithm used? Is

it robust enough to allow for an interpretation and possibly orient governance? The

forthcoming maps will comment on this issue, but let us already note that the central

position of the Physics Lab within this representation is quite robust. The reason is

quite simple : the Physics Lab is the only one to have strong links to the other labs.

Indeed, different physics’ communities are linked to all other labs (for example Mathe-

matics and Computer science (through Livine E/Quantum gravity), to Biology (through

Peyrard M/DNA)...). The other labs are strongly linked only to one or two other labs

(for example, Biology is only linked to Chemistry, through Pichot C/Adsorption, in

addition to its link with the Physics lab), which explains their more peripheral position

in the map. Therefore, the central position of the Physics lab can tentatively be inter-

preted as its central position in terms of modelling tools (molecular simulations tools
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Figure 6.2: “Bibliographic Coupling” community structure of the ENS de
Lyon. The surface of a community I is proportional to its number of articles NI

and the width of the link between two communities I and J is proportional to the
mean bibliographic coupling. For the sake of clarity, communities with less than 10
articles are not displayed. Labels are obtained thanks to a frequency analysis of the
authors and keywords. Each color corresponds to one of the ENS de Lyon scientific
departments : biology (green), chemistry (yellow), physics (pink), computer science
(red), mathematics (violet), earth sciences (blue) and astrophysics (turquoise). The
belonging of a community to a department is determined through the proportion of
community’s articles that use the department (for an example, Table 2 shows that
more than 50% of “HansenJP/Molec-Dynamics” articles’ display the Physics Lab in the
address).

shared with chemists for example), experimental tools (on “frictional mechanics” with

the geophysics lab for example) or theoretical concepts (spin glass theory also studied

by mathematicians). All these shared tools generate common references which lead to

the links that structure our map.
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6.3.3 International collaborations

It is straightforward to use the communities of the preceding map to include the interna-

tional collaborations of the different teams (Fig. 6.3). We simply define links as given by

the frequency of appearance of a foreign country in the community’s articles addresses.

For example, the strongest link is obtained for the Astrophysics papers, for which 41%

of the papers are written in collaboration with a USA institution. The map shows

that some groups rely heavily on many international collaborations (Emsley L/RMN

has strong links with England, Italy and USA), while others are strongly linked to a

single country (Dauxois T/Long range inter, to Italy) and others have mainly French

collaborations (Oswald P/Liquid crystals).

Figure 6.3: International collaborations of the communities. The size of the nodes
correspond to the number of articles in each community which imply a collaboration
with a foreign country. We only keep countries appearing in more than 10 articles and
links corresponding to more than 3% of the articles implying a collaboration with the
linked country. The width of the links is proportional to the proportion of linked articles.
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6.3.4 Co-keywords, co-authors and heterogeneous maps

We now turn to more traditional maps, obtained by co-occurrence of keywords or authors

in articles. Figure 6.4 shows the co-keywords map obtained by using Web of Science

and authors’ keywords. One should be cautious since some terms are clearly polysemic

(“evolution”, “particles”...) and create links between subdisciplines which are not very

relevant. However, it is clear that physics is no longer at the center of the map. Instead,

“crystal-structure” links chemistry (top left) with biology (right), “growth” links biology

to physics and “transition” and “dynamics” link chemistry to physics (left). Another

significant difference : what appeared to be a coherent whole when investigated through

bibliographic coupling (the “Albarede F/Geodynamics” community) turns out to split

into geochemistry (bottom of Figure 6.4) and geophysics (just up of the latter, close to

physics, with keywords as “high-temperatures” or “high-pressures”).

Figure 6.5 displays a co-author map. This represents an accessible way of showing

data to the institutions’ scientists, since names are usually well-known by the commu-

nity. It also represents a good way to tap into directors’ previous knowledge of the

institution. However, coauthorship indicates quite a different (and stronger) link from

the link established by sharing references (as in bibliographic coupling). This is visible

in Figure 6.5 which does not show many links across disciplines (and some of the links

are actually homonyms, such as Bertin E). The main co-publication link arises from col-

laborations between a biophysics lab and computer simulations of biological molecules

(Peyrard/Bouvet/Gilson).

To improve over the limitations of both co-keyword and co-author analysis and

gather most of the available information in a single map, it is possible to include all

the co-occurrences between keywords, authors and institutions. Fig. 6.6 shows the

map obtained for the ENS de Lyon. It displays the connecting rôle of a physics-biology

interdisciplinary lab (Lab Joliot Curie, center right). One can also see that, while

the CNRS plays an important an central rôle, other institutions collaborate on more

specialized subfields (for example Univ California, Berkeley, lower left).

6.4 Discussion, Conclusions

Our aim in this chapter was to present a toolbox to make institution mapping easy and

rapid and to show on the example of our institution, ENS de Lyon, what kind of insights

can be derived from these maps. It should be clear by now that there is not a unique (or

a “best”) map of a scientific institutions, but rather many possible representations, each

map containing a projection from a specific perspective (Leydesdorff & Rafols, 2009;
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Figure 6.4: Co-Keywords Network. The size of the nodes is proportional to the
number of times a keyword is used in our database. The width of the links indicates the
cooccurrence weight between two keywords in the same article. We keep only keywords
used in more than 10 publications. Colors correspond to a community analysis performed
by gephi based on the same Louvain algorithm used for the Bibliographic Coupling
analysis.

Roessner, 2000; Stirling, 2008).

We are now experimenting with ENS scientists’ and direction. ENS heads are en-

thusiastic about this global vision and five posters representing this chapters’ figures are

now displayed in the building. We hope that scientists at ENS de Lyon will test these

maps against their own knowledge of the institution, will argue with us when what we

picture does not fit and join the public discussion by offering alternative interpretations.

As Nietzsche said (Nietzsche, 1969): “the more affects we allow to speak about one

thing, the more eyes, different eyes, we can use to observe one thing, the more complete

will our ‘concept’ of this thing, our ‘objectivity’ be”. The point is that although ev-

erybody acknowledges that maps are only representations and not the real thing, maps
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Figure 6.5: Co-Authors Network (detail). The size of the nodes is proportional to
the number of articles of our database authored by the author. The width of the links
indicates the cooccurrence weight between two co-authors. We keep only authors used
with more than 5 publications. Colors correspond to a community analysis performed
by Gephi based on the same Louvain algorithm we used for the bibliographic coupling
analysis.

affect how we think about the institution (Wood & Fels, 2008).

We hope that our toolbox will lead other scientists to build maps of their own

institutions, thus fostering ongoing dialogue and praxis in the institution. Future work

includes preparing different maps for successive time periods, in order to grasp the

evolution of the institution, and collaboration with other institutions (such as CNRS

and CEMAGREF) which are interested in such global maps.
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Figure 6.6: Heterogeneous Network, mixing authors, keywords and institu-
tions. The size of the labels is proportional to the number of articles of our database
in which an item appear (we keep only items used in more than 20 publications). The
width of the links indicates the cooccurrence weight between two items (we kept only
links with a co-occurrence weight ω > 0.1). Colors correspond to the type of the items
(authors in black, keywords in blue and institutions in red).



Table 6.2: Community “ID Card”. The community Hansen JP/Molec-Dynamics contains N = 547 articles. Its average
internal link weight is < ωin >' 1/223 (roughly, two random articles within the community share 1 reference over 223).

Institution prop σ
Ecole Normale Super Lyon 0.766 0.19
Phys Lab 0.543 26.29
CNRS 0.508 1.95
UMR 5672 0.133 10.52
Univ Lyon 0.111 1.33
Dept Phys 0.076 6.73
Univ Lyon 1 0.075 -3.41
ENS Lyon 0.073 -1.47
Phys Theor Lab 0.073 12.21
CECAM 0.065 15.67

Subject prop σ
Physics, Multidisciplinary 0.27 16.7
Physics, Mathematical 0.254 18.67
Physics, Fluids & Plasmas 0.16 15.77
Physics, Condensed Matter 0.128 10.09
Physics, Atomic, Molecular & Chemical 0.117 9.42
Chemistry, Physical 0.098 3.3
Materials Science, Multidisciplinary 0.069 6.25
Mechanics 0.065 6.7
Physics, Applied 0.064 9.03
Polymer Science 0.042 3.15

Keyword prop σ
DYNAMICS 0.135 14.03
SYSTEMS 0.117 13.65
MODEL 0.104 9.9
MOLECULAR-DYNAMICS 0.053 10.41
BEHAVIOR 0.043 6.65
TRANSITION 0.042 6.12
FLUIDS 0.04 12.14
RELAXATION 0.038 7.27
FLOW 0.038 6.96
MONTE-CARLO 0.036 12.65

Journal prop σ
PHYSICAL REVIEW E 0.155 19.32
PHYSICAL REVIEW LETTERS 0.095 11.28
JOURNAL OF CHEMICAL PHYSICS 0.067 13.92
EUROPHYSICS LETTERS 0.058 11.24
JOURNAL OF PHYSICS-CONDENSED MATTER 0.043 11.22
JOURNAL OF STATISTICAL PHYSICS 0.038 9.18
EUROPEAN PHYSICAL JOURNAL B 0.029 6.78
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT 0.027 8.39
PHYSICAL REVIEW B 0.023 2.1
JOURNAL OF PHYSICAL CHEMISTRY B 0.021 4.36

Authors Nb Paper
Hansen JP 55
Barrat JL 40
Bocquet L 38
Ciliberto S 38
Geminard JC 24
Holdsworth PCW 22
Alastuey A 21
Charlaix E 20
Dong W 20
Cornu F 19

Countries Nb Paper
France 704
USA 89
Italy 47
England 37
Germany 35
Netherlands 25
Poland 25
Switzerland 23
Japan 20
Chile 15

Refs Times used
Hansen JP, 1986, THEORY SIMPLE LIQUID 60
Cugliandolo LF, 1997, PHYS REV E 37
Cugliandolo LF, 1993, PHYS REV LETT 34
Kosterlitz JM, 1973, J PHYS C SOLID STATE 25
Gotze W, 1992, REP PROG PHYS 22
Bouchaud JP, 1998, SPIN GLASSES RANDOM 22
Jaeger HM, 1996, REV MOD PHYS 22
Alastruey A, 1989, PHYS REV A 21
Frenkel D, 2002, UNDERSTANDING MOL SI 18
Grigera TS, 1999, PHYS REV LETT 18

Refs (journals) Times used
PHYS REV LETT 1709
J CHEM PHYS 1406
PHYS REV B 480
PHYS REV E 408
PHYS REV A 399
EUROPHYS LETT 353
PHYS REV E 1 343
J STAT PHYS 310
NATURE 286
PHYSICA A 276
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Chapter 7

The Whole is Smaller than the
Sum of its Parts: a Tentative

Tardean Model

Word of caution: for more than a year, we have been meeting a team of sociologists

led by Bruno Latour at Science Po Medialab. In the frequent discussions, we have been

trying to define the essential bricks of a sociologically grounded model, focusing on the

social theory developed by Gabriel Tarde at the end of the 19th century. Most of the

time, however, was devoted to mutual understanding and to development of a common

language. This was the case for me at least! The introduction of this chapter is an

attempt to summarize the main ideas that came up in our discussions. I hope that the

unavoidable misunderstanding and distortions of sociological ideas will be forgiven.

7.1 Introduction

The individual / society dichotomy

Various sociological theories try to apprehend social phenomena under different points of

view. Hence, according to the holistic paradigm which is issued from Emile Durkheim’s

ideas, individuals are embedded into social structures and institutions that constrain

them, shape their actions and emotions. Social facts (such as social classes) are notions

pre-existing the individuals that should be taken as primary and most significant to

explain social phenomena. On the contrary, in the atomic (or individualistic) paradigm,

individuals should be considered as the central ontological elements in social systems.

According to this notion, each individual is a social atom, linked to other atoms and

147
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which acts in function of its interests and desires. Constant interactions between the

atoms construct society, ie structures, institutions, norms, which are supposed to serve

the interests of the individuals.

Both the holistic and the atomistic approaches are based on a strong assumption:

there is a clear dichotomy between two “levels”, namely individuals and society. This

clear distinction of two levels is often summarized by the notion that “the whole is

greater than the sum of its parts”. This assumption is put into question in some recent

approaches (see Latour et al, forthcoming). According to these approaches, the distinc-

tion between two levels is an artefact originating in the difficulty of navigating through

huge amounts of data and in visualizing the evolution of social phenomena without

making a distinction between the individual and the aggregated levels.

From KISS to KIDS

A clear example of the “atomistic” approach are agent-based models, which attempt to

recreate complex collective phenomena through the interactions of “rational”, utility-

maximizing agents. Examples of such models include :

• Schelling’s segregation model (Schelling, 1971), which uses individual interactions

to explain the emergence of segregation on a global scale

• Large-scale models were proposed by Axelrod (1997). They simulate the emergence

of global phenomena such as exchange markets, seasonal migrations... starting

from individual interactions between simple agents.

• Opinion dynamics, whose main scope is to understand why cultural diversity can

persist at the global level even when individual interactions push towards conver-

gence. These models have specifically interested a growing number of physicists

(for a recent review, see Science, 2009; Castellano et al., 2009).

• Many additional examples can be found in the Journal of Artificial Societies and

Social Simulation (http://jasss.soc.surrey.ac.uk/JASSS.html).

In the last decades, “atomic” agent-based models demonstrated their importance

to overpass the severe limitations of current theoretical frameworks, especially in the

modelling of economic phenomena. They allow to move beyond equilibrium states to

study transient regimes, which show far more complex and interesting behavior. They

overpass the drastic simplifications needed to warrant analytical treatments (such as

agents’ homogeneity, cognitive closure in game theory...). A key principle common to
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most of these model is known as K.I.S.S. (“Keep it simple, stupid”, Axelrod (1997)).

Indeed, in the various effort to model social phenomena, the main tradition has so far

mainly consisted in starting from discrete atomic entities endowed with the smallest set

of properties and to see whether or not, through their interactions, it would be possible

to obtain the emergent phenomena most often associated with the notion of society (For

a recent overview of this approach, see Cho, 2005). In this tradition, the success of

the model often lies on finding the minimal sufficient rules for atoms and interactions

allowing to obtain the maximal number of structural features.

Figure 7.1: ‘Profile’ of the keyword self-organization. This co-occurrence map
shows the keywords, references and addresses of the articles which use the keyword self-
organization (the central node without label) between 1996 and 2000 according to the
Web of Science c© . Refer to chapter 6 for the method of construction of such maps.

Although this tradition has been productive in many cases especially because it

cleared the way of too many ad hoc assumptions added by social scientists, it had

the drawback of appearing too simplistic to account for the whole complexity of social

existence: individual can not be reduced to a unique real characterizing their opinion nor

do they move solely for finding a “good” neighborhood! Instead of appearing as a great

enlightenment, these simplistic models might have appear to the eyes of some social

scientists as artefacts. As a consequence, the whole agent-based approach might have

in certain cases amplified the traditional divide between quantitative and qualitative
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methods in social sciences.

As a reply to this kind of criticisms, some scientists have developed an alternative

modelling principle, called K.I.D.S. (“Keep it descriptive, stupid!”, Edmonds & Moss

(2005)). One starts with a model that is as descriptive as possible, taking into account

as many features of agents as possible, generally the characteristics for which data is

available, including anecdotal accounts and expert opinion. Simplification is only applied

when the model and evidence justifies it.

Figure 7.2: Keyword self-organization considered as a ‘whole’ produced by the
intersection of ‘monads’ (articles) which are far richer than this single keyword. We use
the 18 articles published in 1991 which use the keyword self-organization (the central
node without label) and built the co-occurrence map of their authors, addresses and
keywords as in Figure 7.1. To highlight the idea of ‘intersection’, the attributes of three
‘monads’ (articles) are shown surrounded by a circle.
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A Tardean approach for understanding social data

Therefore, it seems interesting to build a model able to follow the emergence and evo-

lution of social structures or institutions with two specific starting points :

• there should not be any ontological distinction between “agents” and “structures”

ie no notion of levels

• following the KIDS principle, agents should be taken as complex as possible

A good starting point to overpass the individual-structure paradigm may well be

the work by Gabriel Tarde, a 19th century sociologist whose work has been somewhat

dormant in the social science during the 20th century, but has been recently unearthed

and given a new impetus by the development of Actor-Network Theory (Latour, 2005;

Barry & Thrift, 2007; Latour, 2010).

The central element in Tarde’s theory (see Tarde, 1893, 1890) is the monad, a concept

originally developed by Leibniz. For Tarde, there is no need for a notion of overarching

society and there is no individual to begin with either: everything is a monad, that

is a representation, a reflection, or an internalization of a whole set of other elements

borrowed from the world around it (Latour, 2010). A monad has to be understood as an

entity with some asperity which can be linked to other entities. An individual is a monad

defined by the set of links towards all the entities that characterizes the individual (in a

sense, his “profile”, or curriculum vitae, ie a list of everything the individual has done

in the past, the people he has seen, the clothes he has worn...). A group of people is a

monad defined by the the set of links towards entities that defines them (/ that they

have in common). A neuron is a monad defined by the set of neurons connected with

it. There is not a single entity that can be defined per se, every entity is defined by its

“profile”, i.e. the set of entities to which it is linked (Figure 7.1). Each “individual”

entity is then a “whole” by itself. In Tarde’s ontology, there are no individuals, no

wholes, only monads, monads connected to monads, monads within monads. . .

Monads perfectly match our conditions: they are complex entities which go beyond

the notions of agents and structures. Still, how can social phenomena be understood in

terms of monads? Tarde proposed two notions to explain social phenomena: imitation1

1In Tarde (1890)’s words:
Quel est le fait social élémentaire ?
C’est la communication ou la modification d’un état de conscience par l’action d’un être conscient sur
un autre. (...) parler à quelqu’un, prier une idole, tisser un vêtement, scier un arbre, donner un coup
de couteau à un ennemi, sculpter une pierre, ce sont là des actes sociaux, car il n’y a que l’homme en
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and invention. Everybody imitates what or who he admires, things that he finds good

for him, but creates an original mix from the imitated models chosen at different sources.

History can be understood as successive imitative fluxes, successive successful models

copied by a large number of individuals. Imitation is a natural counterpart of the notion

of monad. Indeed, conceiving individuals as monads means conceiving them as a large

set of reflections. We find pieces of each other in one another, and choose to imitate

pieces of one another. In Tarde’s terminology, our choice of things to imitate and the

way we innovate by combining them is driven by beliefs and desires.

Let us finally stress an important point, which is the relation between monads and

the usual notion of “structural features” or wholes. For Tarde, what is usually taken as

“structural features” are the intersections of complex individual monads (Figure 7.2).

In some sense, for him, the whole is always simpler and smaller than the parts. . . These

structures evolve in time because the monads themselves combine differently the el-

ements of the world but may repeat and keep unchanged some feature (the keyword

“self-organization” persist in time while the authors citing it change over time), which

Tarde calls imitative rays.

In next section, we describe a tentative model describing a virtual society built on

Tarde’s precepts. Our goal is to emphasize and discuss the harsh constraints imposed by

the need for properly defined, complete and coherent algorithms required for simulations.

Needless to say, the positive side of these constraints is to force social theorists to provide

better definitions of their concepts !

7.2 A Tentative Tardean Model

We present in this section an attempt to formalize Tarde’s ideas into a mathematically

defined model to allow the construction of a simulation algorithm. To build models of

interactions between complex agents, we have greatly benefited from discussions with

Guillaume Beslon and we have freely gleaned in a wide literature, mainly (Holland, 2000;

Dawkins, 1976; Kauffman, 1993; Gilbert et al, 2001). A discussion on the difficulties

encountered in this exercise follows in next section.

The model considers a population of N complex agents (i = 1, 2, ...N) completely

characterized by a sequence Si = (si1, si2, ...siL) of L� 1 bits. In analogy with what is

done in genetic algorithms (see for example Knibbe et al., 2007), we assume the existence

société qui agisse de la sorte, et sans l’exemple des autres hommes qu’il a copiées volontairement ou
involontairement depuis le berceau, il n’agirait pas ainsi. Le caractère commun des actes sociaux, en
effet, c’est d’être imitatifs. Voilà donc un caractère bien net et, qui plus est, objectif.



CHAPTER 7. A TENTATIVE TARDEAN MODEL 153

of a ‘fitness function’2 f which assign a score f(S) ∈ [−1, 1] to each sequence S. This

fitness function is taken to be very simple for test cases, but we ultimately want to

use complicated function presenting several competing optima (see Figure 7.3). While

the interpretation of the fitness function is widely accepted in Darwinian evolution, its

meaning in a social context is less clear and will be discussed below. This function is

supposed to be fixed and identical for all the agents.

Figure 7.3: Left. Complex agents. The agents of our model are completely character-
ized by a sequence of bits that they can exchange with their neighbors. Right. Fitness
landscape. Example of a bumpy fitness landscape, here with two input variables. The
landscape shows several local maxima corresponding to several optimum sets of input
parameters.

The agents can imitate each other by copying parts of each other bits’ sequences if

they are linked. The initial interaction network is taken as an Erdös-Rényi network of

average degree K, ie the agents are initially linked to K neighbors.

The dynamics of the systems is defined as follows: at each interaction, an agent i is

picked at random. Then, one of two following processes occurs :

• With a probability α1, imitation occurs.

A neighbor j of the picked agent i and a random sequence of agent j is chosen at

random. Agent i then imitates agent j by copying the sequence of bits in his own

sequence (at the same position) with a probability:

P1 =
1

1 + exp−β1(f(S′i)− f(Si))
(7.1)

where f(Si) is the fitness of agent i sequence and f(S′i) the fitness his sequence

2In genetic algorithms, fitness functions are used to determine the degree of optimality of a given
solution (such as a virtual chromosome). The best solutions are then mixed to produce a new generation
of more adapted solutions.
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will have if he decides to imitate. The parameter β1 allows for some tuning of the

imitation process. For β1 � 1, imitation will occur if and only if it implies an

increase in agent i fitness. For β1 � 1, the probability to imitate does not depend

on the fitness value and agent i decision is just random.

• With a probability α2, innovation occurs.

A bit l ∈ (1, ..., L) of agent i is chosen at random. Agent i will to choose to

‘innovate’ by flipping this bit with a probability

P2 =
1

1 + exp−β2(f(S′i)− f(Si))
(7.2)

where f(Si) is the fitness of agent i’s sequence and f(S′i) the fitness his sequence

will have if he decides to innovate. Here again, the parameter β2 allows for some

tuning of the influence of the fitness function on the innovation process.

Obviously, the parameters α1 and α2 (where α1 + α2 = 1) define the ratios between

the time scales on which each process occurs. The parameters β1 and β2 measure the

influence of noise in the agents’ choices

In order to understand the rationale behind these rules, we discuss the expected

qualitative evolution of the model. When agents are completely isolated (ie not linked

to other agents), the only way to increase their fitness is by a succession of inventions

in their sequences, which will happen on a rather long time scale (since only one bit is

changed at each time). When the agents are connected, two processes will accelerate

the increase in fitness. First, longer sequences may be exchanged in a single iteration.

Second, “good” sequences may be imitated and therefore act like social coordinators,

forming stable “structures” or “institutions”.

Depending on the exact definition of the fitness function, a large phenomenology

of collective events can be expected. If the fitness function is constant, each sequence

is a priori equivalent. In case there is no innovation (α2 = 0), one expect that the

agents will converge in the long run toward the same sequence S∗. With our choice of

W and D, one can even expect this sequence to correspond to the sequence of initial

majority bits (ie for each l ∈ (1, ..., L), s∗l = 1 if
∑

i sil > N/2, and s∗l = 0 otherwise).

If invention is added, there will be a competition between imitation and invention, the

imitative process promoting convergence of the agents’ sequences and the invention

process promoting diversity.

Suppose now that the fitness function has a single maximum, eg by taking f(S) =∑
l sl (meaning that the fitness function increases linearly with the number of 1 in a
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sequence). In case there is no innovation, once again we expect a convergence toward

a consensus sequence S∗. However, even if the agents are rational imitators (β1 � 1),

the consensus sequence does not necessarily correspond to the optimum sequence in

terms of fitness. Indeed, all it takes for imitating a sequence is an increase in fitness. A

‘second-best’ sequence such as ‘11110111’ would be imitated by most of the agents and

could diffuse and impose itself to the general population. In a sense, there is a compe-

tition between imitation and optimization that can temper the collective optimization.

Turning rational (β2 � 1) innovation on would allow here the agents to mutate their

sequence to obtain a fully optimal sequence. If innovation is more random (β2 finite),

the invention process promote diversity and there is here again a competition between

imitation and invention.

In case of more complex fitness functions presenting several local maxima (see Figure

7.3), more complicated collective behaviors are obviously expected. In line with Tarde’s

intuition, we do not expect a single sequence to dominate all the society. We rather an-

ticipate that these local maxima will affect the dynamics by “recruiting” agents in some

“niches” (ie the patterns of sequences allowing to reach those maxima). These stan-

dardized niches will endure through time before being modified again through agent’s

innovations. We therefore expect global trend towards complexification of sequences,

leading to an overall increase of agent’s fitness. An important and tricky part of the

work consists in playing with the numerous parameters of the model to obtain these

satisfactory outputs.

Obviously, all these speculations are only anticipations whose validity has to be

checked. Some unpredictable consequences of the chosen dynamic rules, parameters,

fitness function may very well be uncovered through actual simulations.

7.3 Discussion

The different elements present in our model has been chosen to fulfil Tarde’s prescrip-

tions. Our agents have been chosen as complex entities : long binary sequences. More-

over, sequences and sequences define at the same time the agents and the structures

(diffusing sequences). Hence, in our model there is no ontological distinction between

agents and structure, which is exactly what we wanted at the beginning. In agreement

with Tarde’s sociology, our model offers a complete reversibility in following how agents

come to agree by simplifying themselves through the influence of diffusing sequences,

and following how these sequences spread among populations of agents by modifying

themselves and “recruiting” agents interested in them. In that sense, these diffusing
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sequences adopted and sometimes modified by the agents are similar to Tarde’s ‘imi-

tative rays’. Moreover, once a sequence has been accepted by an agent, it changes the

agent’s perception of all the other sequences (through the utility function), making these

perceptions more similar to the perceptions of all the agents sharing this sequence.

If our model manages to recover important Tardean features, several of the choices

we made are debatable. The main problem we encountered was to find a proper explicit

criterion for deciding whether an agent should choose to imitate or not, innovate or

not, etc... Tarde bases the agents’ choices on the notions of belief and desire. We

choose to transcribe these notions in a unique, constant in time fitness function, which

already shows complex collective behaviors. From a sociological point of view, this

fitness function gives a strong foundation to the social outcomes without completely

determining them (for a given complex fitness function, the states of the systems might

depend on the initial conditions, some random processes. . . ). This ‘monolithic’ extrinsic

aspect may however appear at odds with the common notion of beliefs and desires. In

another version of the model, individual and dynamic fitness functions could emerge

as a result of the agents’ interactions and choices. Another possibility would be to

introduce individual effective fitness functions. In this hypothesis, the existence of a

unique objective function is assumed, but the agents are not aware of it. They use their

own filtered versions obtained through experience and social interactions. But could we

define properly those effective fitness functions?

Our choices of dynamic rules are also debatable. We use logit probabilities mostly by

convenience, while the logit form is a priori no more justified than any other form taking

into account the fitness variations. The same criticism applies to the other (un)explicit

choices. For example, we could choose to work in a whole connected society rather than

on a random network, or allow the agents to change neighbors instead of assuming a

static interaction network. The general question we encountered while trying to formal-

ize Tarde’s ideas hence was : what are the good criteria to judge that we have built a

‘good’ model, or that the simulation outputs could be interesting?

The answer we reach here is that the formalization of a theory is not sufficient to

built a complete, ready-for-simulations model. In order to complete this framework,

one should start from the study of a specific social phenomenon and derive precise rules

from analysis of real data...



Chapter 8

Lasting Structures from Non
Lasting Entities

One of the central questions of sociology is the durability of institutions at the human

time scale : how can lasting structures emerge from non lasting entities? This is one

of the recurrent topics of our discussions with the Medialab team. Here we show a

simple model, inspired by models proposed by physicists, which tackles this question.

The relevance of such a model for the real social world is discussed at the end of this

chapter.

8.1 Introduction, motivation

One of the standard strands of models for physicists interested in social systems are

the so-called “opinion” models. As often in this field, one should be cautious about the

terms, because “opinion” refers here only to a drastically simplified image of this rich

social concept, i.e. a real or integer number supposed to distinguish among different

possible opinions. These models introduce interactions between the agents which lead

to changes in agents’ opinions and the links they establish with other agents. Various

models differ on the precise nature of the opinion (whether it is discrete or continuous,

uni or multi-dimensional), on the topology and the dynamics of the interaction network

(complete graph, regular lattices, random graph, scale-free network, static or adaptive

network), on the precise rule of interaction between agents . . . (for a recent review, refer

to Castellano et al., 2009, and references therein).

A central question investigated by these models is the persistance of pluralism of

opinion in a more and more connected world, in which individuals are constantly imi-
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tating each other. In Axelrod (1997)’s word: If people tend to become more alike in their

beliefs, attitudes and behaviors when they interact, why do not all differences disappear

? Most of these models concentrate on the study of the final states of the system. There

are several possibilities : either all agents end up into a single cluster (consensus), or

several opinion clusters form, containing a significant fraction of agents (polarization), or

alternatively agents are scattered on a large number O(N) of clusters (fragmentation).

Most papers are focused in obtaining the well-balanced polarized state, because the

two extremes of consensus or fragmentation are trivial outcomes. Axelrod (1997) and

Deffuant et al. (2000) are two widely known examples of models with imitating agents

which yield polarized final states. However, the stability of the polarized state rests on

a - rather unrealistic - strict interaction rule allowing agents to interaction only if their

opinions are close enough. If this strict condition is softened (eg by introducing some

noise), the polarized states become instable and the system reaches consensus (Klemm

et al., 2003; Kozma & Barrat, 2008). To improve the robustness of the polarized states,

recent models have introduced an “adaptive” rewiring of the network, allowing agents

to dynamically rewire their links to agents with similar opinions (Holme & Newman,

2006; Kozma & Barrat, 2008; Iñiguez et al., 2009). This rewiring leads to the creation

of more stable polarized states. As Kozma & Barrat (2008) claimed : the behavior of

the model on adaptive networks is in fact more robust than on static networks, since

the same global picture [polarized states] is observed for strict or probabilistic commu-

nication rules. However, a close inspection of the probabilistic interaction rules they

use reveals that these are asymmetric and rather artificial. Actually, the probability for

two neighbors with an opinion difference less than d to break their link is strictly 0 (see

Kozma & Barrat, 2008). While this asymmetry prevents agents close enough in opinion

to break their links and therefore prevents any disaggregation of clusters, it is not clear

if the stationary states of their model remain robust when this rule is softened.

In this chapter, we build on a modified version of (Kozma & Barrat, 2008) to inves-

tigate this question and try to obtain structures that last from entities that do not last,

as our friends sociologists request. We first show that by introducing a more natural,

symmetric noise in the interaction rule, the rewiring process is not sufficient to avoid a

collapse towards consensus in the long run. Then, we show how robust polarized states

can be obtained by introducing random fluctuations in the agents’ opinions. Ironically,

this polarized state is now too robust to please sociologists. We therefore end this chap-

ter by showing our work in progress on a last model which takes into account the “age”

of the agents and leads to interesting “generation” phenomena and constantly changing

polarized states. In this last model, opinion clusters can continuously grow by recruit-
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ing new members, contract and disappear by losing members, merge with other clusters

. . . In other words, we obtain a dynamically stable state which is more appealing for

sociologists and might stimulate their conceptualization of structure emergence.

8.2 An opinion model with adaptive network

8.2.1 Model

Our model is based on the Deffuant Model (Deffuant et al., 2000) with an adaptive

network similar to what can be found in Kozma & Barrat (2008). The model considers

a population of N agents (i = 1, 2, ...N) which are characterized by a continuous opinion

at time t o(t) ∈ [0, 1]. The initial interaction network is taken as an Erdös-Rényi

network of average degree K, ie agents are initially linked to K neighbors on average

and opinions are also chosen at random. Following the spirit of Kozma & Barrat (2008)’s

model, we choose to introduce in our model a non-strict update rule ensuring a non-zero

probability for neighbours of non-close opinions to communicate. Specifically, we define

the probability of convergence between two agents i and j:

pconv(i, j) =
1

1 + exp (ω (∆o− d)/d)
(8.1)

where ∆o = |oj(t) − oi(t)| is difference of opinion between the agents, d is the usual

Deffuant threshold, and ω is a “leakage” parameter. For ω � 1, our update rule is

very similar to Deffuant’s. For ω � 1, pconv is finite and does not depend on ∆o hence

all pairs of neighbors interact in the same way. Convergence means that the agents’

opinions are updated according to

oi(t+ 1) = oi(t) + µ(oj(t)− oi(t))

oj(t+ 1) = oj(t) + µ(oi(t)− oj(t)) (8.2)

where µ ∈ [0, 1/2] is a convergence parameter. We will assume here that µ = 1/2,

meaning that both agents i and j adopt the same opinion once they have interact. We

also introduce a possibility for link rewiring. To do so, we suppose that at each iteration,

with a probability pbreak = 1− pconv, the link between i and j is broken and a new link

between agent i and a randomly chosen agent is created. In our simulation, we typically

take ω = 5, meaning that two neighbors sharing the same opinion will break their link

with a probability ∼ 0.01.

Finally, we introduce the fact that agents are “non lasting” entities. For this, after



CHAPTER 8. LASTING STRUCTURES FROM NON LASTING ENTITIES 160

the agent and one of its neighbors have been selected and the interaction/rewiring pro-

cess has been carried out, with a probability ν we change randomly its opinion while

keeping the same links. This can be interpreted as the “death” of the agent and the

birth of another one, with different characteristics (different opinion) but belonging to

the same group (same links). In other words, the agents’ average lifetime is 1/ν.

To summarize, on each step we do the following:

• 1. Pick an agent i at random. If that agent has no neighbor, do nothing. Other-

wise, pick one of its neighbors j and continue the process.

• 2. Generate a random number r ∈ [0, 1].

• 3. If r < pconv(i, j), then the opinions of i and j converge according to

oi(t+ 1) = oi(t) + (oj(t)− oi(t))/2

oj(t+ 1) = oj(t) + (oi(t)− oj(t))/2

• 4. Else (ie if r ≥ pconv(i, j)) update the link between i and j:

Choose a randomly chosen agent k which is neither i nor i’s neighbor

Connect i to k and break the link between i and j.

• 5. With a probability ν, update agent i: oi takes a new random value between 0

and 1.

Following Kozma & Barrat (2008), we track the evolution of the system by detecting

the opinion clusters of agents. Defining opinion neighbours as two linked agents whose

difference of opinions is smaller than the tolerance threshold d, an opinion cluster is

defined as a set of agents such that between any two of these agents there exists a path

of opinion neighbours. Compared to topological clusters which track the connected com-

ponent of the network, opinion clusters tracks the set of agents between which a path

of communication (∆o < d) exists.

8.3 Results

The detailed analysis of our model is still in progress. In this section, we only present

some simulation outputs illustrating the different behaviors obtained by varying the
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different parameters. In all the simulations presented here the opinions of the agents are

initially randomly chosen between 0 and 1, the number of agents is fixed to N = 1000,

the average degree to K = 10 and the tolerance threshold is fixed to d = 0.04.

8.3.1 Reference case : no noise, no death

In order to investigate the effects of each parameter, we start with the reference case,

where ν = 0 (ie without opinion noise or, in our interpretation of ν as a typical lifetime,

with “immortal” agents), and with no leakage (ω � 1). This last condition is fulfilled

by using : 
pconv = 0 when ∆o > d

pconv = 1/2 when ∆o = d

pconv = 1 when ∆o < d

Figure 8.1: Limit case ω → ∞: without leakage, convergence towards stable
polarized states. Left: Evolution of the opinions of a sample of 100 out of the
N = 1000 agents. Right: Evolution of the mean opinion of detected opinion clusters
with more than 10 agents. The width of the error bars (in green) is proportional to the
number of agents within the opinion clusters. Other parameters are fixed to K = 10,
d = 0.04 and ν = 0.

Fig 8.1 displays the temporal evolution of the mean opinion inside the opinion clusters

containing more than 10 agents and the temporal evolution of the opinion of a sample

of agents. Opinion clusters are detected independently at each normalized iteration

(corresponding to N iterations). We also keep track of the number of agents within

each opinion cluster. On the left panel of Fig 8.1, we observe that, starting from random

opinion, local convergence processes take place and lead to several opinion clusters. On
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the right panel of Fig 8.1, we can check that the obtained opinion clusters are indeed

stable: in the absence of leakage, an agent can only interact with and never break a link

with another member of his opinion cluster.

These polarized states are the typical outcome obtained in the case of no opinion

noise and no leakage (at least for small d and reasonable values of N and K), and

correspond to the results obtained by Kozma & Barrat (2008).

8.3.2 Introducing opinion leakage

We now investigate the effect of the introduction of leakage. Do we still obtain several

stable opinion groups when we introduce a small probability for neighbors with close

opinions to break their link and neighbors with very different opinions to interact?

Figure 8.2: Introducing leakage yield slow convergence towards consensus.
Left: Evolution of the opinions of a sample of 100 out of the N = 1000 agents. Right:
Evolution of the mean opinion of detected opinion clusters with more than 10 agents.
The width of the error bars (in green) is proportional to the number of agents within
the opinion clusters. Other parameters are fixed to K = 10, d = 0.04, ω = 5 and ν = 0.

As in the reference case, the left panel of Fig 8.2 shows that on small time scales,

local convergence processes lead to the formation of several opinion clusters. However, as

emphasized by the right panel of Fig 8.2, on longer time scales, we observe coalescence of

opinion clusters. This coalescence is due to the addition of several unlikely but possible

steps allowed by the leakage mechanism. First, each agent within an opinion cluster can

break a link with another member of the cluster and create a new link with a randomly

chosen agent, possibly in another cluster distant in opinion space. This happens with

probability pbreak = 1/(1 + expω(0− d)/d) ' exp (−ω). While this probability is small
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(7.10−3) for typical ω values used here (ω = 5), once multiplied by the number of links

within a cluster (' 100 ∗ 10 = 103), it generates many links breaking, leading to the

creation of many bonds between members of different clusters. Once a intercluster link

is generated and picked again in a subsequent iteration, it may survive and lead to

convergence with probability pconv = 1/(1 + expω(∆O − d)/d) ∼ exp (ω/d(∆O − d)),

where ∆O is the opinion difference between the two clusters (and therefore the agents).

Once this step is accomplished both agents can still be easily re-attracted in their original

opinion clusters, but they can also attract new agents towards their new opinion. The

second step will be easier since the first two agents have created a “bridge” right in the

middle of their two original clusters.

This qualitative explanation is in agreement with Fig 8.2’s right panel. The coa-

lescence between two groups seems to accelerate once a first bridge has been built and

the time needed for two groups to coalesce increases exponentially (Fig 8.3) with the

initial difference of opinion between the two clusters considered. Therefore, in the limit

of infinite time, all clusters coalesce into a single one, leading to a consensus state. This

result, obtained with a symmetric opinion noise, contradicts Kozma & Barrat (2008)

and suggests that even adaptive networks are not robust to noise or leakage.

Figure 8.3: Time for cluster - cluster coalescence as a function of their initial
opinion difference. Data is well fitted by tcoal= 0.136 exp(O * 116.03), with 116 '
ω/d = 125. Estimating the time needed for coalescence into a single cluster (assuming
a distance ∆O = 0.5 for the two last clusters) is 1026. Parameter values : K = 10,
d = 0.04, ω = 5 and ν = 0.
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8.3.3 Lasting Structures from Non Lasting Entities

We now introduce an additional feature to the model: the opinion noise or death/birth

cycle of the agents. Obviously, the introduction of agents born with a random opinion

tends to counteract the unavoidable convergence of opinions implied by the leakage.

Two time scales are now relevant : a characteristic coalescence time tcoal (see above)

and the characteristic lifetime 1/ν of the agents. For νtcoal � 1, the coalescence process

is preponderant and the system converges towards a consensus state with some fluctua-

tions. For νtcoal � 1, noise wins and agents constantly change their opinions randomly,

leading to a fragmentation state. The interesting question now becomes : is there an

intermediary stage?

Figure 8.4: Opinion noise combined to leakage yield slightly fluctuating polar-
ized states. Left: Evolution of the opinions of a sample of 100 out of the N = 1000
agents. Right: Evolution of the mean opinion of detected opinion clusters with more
than 10 agents. The width of the error bars (in green) is proportional to the number
of agents within the opinion clusters. Other parameters are fixed to K = 10, d = 0.04,
ω = 5 and ν = 10−4.

The simulation results presented in Fig 8.4 suggest that an intermediary stage does

exist. We observe the existence of opinion clusters with fluctuating mean opinions.

Clearly, the number of opinion clusters depend on d, but also on ν and ω (which controls

tcoal). Preliminary analysis suggest that at short time scales, clusters randomly diffuse

both in number of agents and average opinion (Figure 8.4). This brownian motion arises

by death of the clusters’ agents and capture of free agents that are born close in opinion

space. At longer time scales however, this random drift is limited by the cluster-cluster

correlations induced by the interactions of the capture zones of neighboring clusters in
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opinion space. This competition for newborn agents leads to a strong stability of the

total number of clusters, which last for times much longer than the agents’ lifetime.

8.4 Addition of Generation Effects

At this point, we have managed to obtain long lasting structures (the opinion clusters)

from perishable agents. Actually, from a sociological point of view, the structures might

even last too long, since they never seem to decay. The reason of the stability of these

structures is the simplicity of the opinion space, which leads to easy assimilation of

newborns by existing opinion clusters. In other words, the one-dimensional opinion

space is too homogeneous to allow for a complex collective behavior.

We have started to explore the effects of including a last ingredient to the opinion

space, namely “generation” effects. Specifically, we keep the same model, but we replace

in Eq. 8.1 the simple opinion distance ∆o by a combination of opinion and age distance,

where the age a(t) of an agent is simply the number of normalized iterations it has lived

since its birth. Eq. 8.1 then becomes :

pconv(i, j) =
1

1 + exp (ω (
√
|∆o|2 + |ν∆a|2 − d)/d)

(8.3)

The term ν∆a introduces heterogeneity in the opinion space : for example, two

agents with similar opinions but widely different ages (measured in ν units) may easily

break their link. A (pseudo)sociological rationale for this ingredient would be that

different generations may see the opinion space differently. Fig 8.5 shows an example of

the complex phenomena produced by generation effects. On short time scales (compared

to 1/ν), opinion clusters still exist and are rather stable. On longer time scales, we

observe that some opinion clusters disappear by progressive death of their agents, while

others can recruit young agents and last for hundreds of agents’ lifetimes. We also see

merging of clusters close enough in opinion and growth of a new cluster in the space

left free by this fusion. We are currently investigating this rich phenomenology, trying

to understand what determines clusters’ distinct evolutions, to quantify their lifetime,

their evolution in opinion space (random walk?), how mergers can be predicted . . .

8.5 Discussion

The work presented in this chapter focuses on simple models of “opinion” clustering, of

the emergence and persistence of structures that can last longer than individuals that
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Figure 8.5: Generation effects produce rich collective behaviors. Left: Evolution
of the opinions of a sample of 50 out of the N = 500 agents. Right: Evolution of the
mean opinion of detected opinion clusters with more than 10 agents. The width of the
error bars (in green) is proportional to the number of agents within the opinion clusters.
Other parameters are fixed to K = 10, d = 0.04, ω = 5 and ν = 10−5.

give rise to them. We have developed a series of models that lead to robust polarized

states and dynamical equilibria. The last model reminds us of a classic sociology text,

Georg Simmel’s study of the persistence of social groups (Simmel, 1898) : it is meaning-

ful to speak of group identity, despite shifting membership and low institutionalization,

if there is some membership continuity in contiguous stages [...] The change, the disap-

pearance and entrance of persons, affects in two contiguous moments a number relatively

small compared with the number of those who remain constant. The departure of the

older and the entrance of the younger elements proceed so gradually and continuously

that the group seems as much like a unified self as an organic body in spite of the change

of its atoms.

Despite this parallel, we do not think that this kind of simplistic model should aim

at being realistic by inclusion of additional ingredients. Rather, our discussions with

Sciences Po’s sociologists open another direction. We speculate that these models can

help them enriching their conceptualizations of the structuration phenomenon. This

could arise from a detailed examination of the structuration that happen in this virtual

society and their tentative interpretation using the usual sociological theories. Does this

confrontation help them in any way in renewing their conceptual repertoire? Do we

observe group evolutions that are unexpected and difficult to explain? The future of

this stimulating and demanding collaboration will tell!
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Conclusion

Recapitulation

The original motivation for this thesis was to explore social phenomena using tools de-

rived from statistical physics, and more generally quantitative tools. Most of our work

was concentrated on three different projects which all share a central question, that of

the relation between individual and collective, aggregated entities.

The first part of the thesis focused on Schelling’s segregation model. We believe that

our work has strongly contributed to the development of a deeper understanding of the

mechanisms at stake in this paradigmatic model. We hence investigated in Chapter 1 the

robustness of unwanted global segregation patterns in respect with the introduction of

coordination between the agents’ moving decisions. Our simulations of different forms of

taxation or induced collaboration between the agents showed that even a small amount

of coordination can significantly reduce unwanted segregation.

We then presented in Chapter 2 a framework for Schelling’s model which allowed

us to derived general and unprecedented analytical results. Specifically, we were able

to characterize the global configurations of a virtual city by a potential function which

maximizes the stationary states - at least for a given range of the individual utility

functions. We showed in particular that in the context of continuous neighborhood,

the only solvable case was the one already presented by Zhang (2004a), ie the case of

linear utility functions. We hence put forward the concept of bounded neighborhood

- an alternative way to define the network of interactions of the agents in the city. In

that context, we showed that a potential function exists for a much broader range of

utility function. We use this potential function to analyze the outcome of the model

169
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for three families of utility functions, namely linear utility functions, Schelling’s original

stair-like utility functions and asymmetrically peaked utility functions. In all cases, the

potential function allowed us to derive the segregation level and the corresponding cost

in the collective utility.

In chapter 3, we used a simplified version of our analytical model - with only one

type of agent - to come back to the question of the level of coordination necessary to

reduce unwanted segregation patterns. By introducing a ‘cooperativity’ parameter α

allowing to tune continuously between strictly individual-driven and strictly collective-

driven dynamics, we characterized a qualitative transition from a segregated phase of

low collective utility towards a mixed phase of high collective utility. This study was

performed from a physicist’s point of view, in which we identify the generalized potential

function - encompassing both individual and collective dynamics - as an effective free

energy.

In chapter 4, we presented our analytical approach in a more general framework,

showing how it could apply to a wider range of socio-economic models.

In the second part of the thesis, we explored huge databases on scientific literature

(mostly Web of Science) to investigate the existence and evolution of paradigms or

scientific institutions.

Chapter 5 hence tackled the question of the existence and coherence of “complex

system science”. Starting from a large database (141 098 records) of relevant articles

published between 2000 and 2008, we measured a scientific similarity between articles

thanks to the bibliographic coupling approach - based on shared references - and we

detected the field communities emerging from these interactions. These ‘natural com-

munities’ presented a far richer structure than the usual partition of science in fixed

disciplines or institutions. Our analysis of this structure revealed that the overall coher-

ence of the ‘complex systems’ field does not arise from a universal theory but rather from

computational techniques and fruitful adaptations of the idea of self organization to spe-

cific systems. We also put forward the existence of ‘trading zones’, ie small communities

creating an interface between disciplines around specific tools or concepts. The place of

complex systems science within the whole landscape of science was also investigated in

two preliminary maps representing French 2000 and 2010 natural science communities.

While Self-Organization, Self-Organized Criticality and Complex Network do constitute

coherent subfields in those maps, no unified conceptual kernel for “complexity science”

is identified.

In Chapter 6, we presented a set of routines allowing to draw different maps of the
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research carried out in a scientific institution. We took the example of our institution,

ENS de Lyon, to show how different maps, namely co-occurrence (of authors ,keywords,

institutions) maps and bibliographic coupling communities maps, can be built and what

kind of information they can provide. We emphasized the fact that these different maps,

based on the same elements, offered different views on the institutions at the global scale.

Finally, in the third part we presented the work that resulted from our collaboration

with a team of sociologists from the MediaLab at Sciences Po.

Chapter 7 hence questioned the assumption of a clear dichotomy between two ‘levels’,

namely individuals and society. Building on the social theory developed by Gabriel

Tarde at the end of the 19th century, we explored different possibilities to visualize (and

therefore conceptualize) the evolution of social phenomena without making a distinction

between two levels. Bibliometric data were used as an example. We also proposed an

attempt to formalize Tarde’s theory in the scope of an algorithmic model. While our

prototype model fulfilled several of Tarde’s precept, it raised many more questions.

In Chapter 8, we focused on a single question, namely the existence of lasting struc-

ture from non lasting entities. We built on the - more standard - physicist approach

developed in opinion model. While most papers focus on the stationary properties of

the model, we chose to build a model to investigate the dynamical properties of social

structures which are always changing. The key ingredients of the model we presented

are the use of adaptive network, the introduction of noise in the agents’ interactions, a

turnover in the population of agents and the introduction of generation effect, the agents

taking into account their opinion and age difference in their interaction. The outcomes

of our model display a rich phenomenology of group dynamics.

Approach

The research presented in this thesis was performed in a strong interdisciplinary spirit.

Indeed, for each research project we took great care to tackle the questions at the

heart of these projects in a mutually beneficial way for both social and natural sciences.

Hence, our work on economics’s aspects of Schelling model in chapters 1 an 2 is coun-

terbalanced by a the presentation of aspects of this resolution that may be of interest

for a physicist in chapters 3 and 4. In the same way, our discussion on the nature of

social entities of the chapter 7 is counterbalanced by chapter 8.

If this balance is somehow necessary to ensure the permanence of a collaboration

between researchers from different disciplines, it is my firm belief that these interdisci-
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plinary collaborations’s worth comes from the development of new ways of thinking and

of conceptualizing the objects of one’s discipline.

Perspectives

Several extensions of the work presented in this thesis could be explored.

As stated in chapter 4, we believe that the concept of ‘link’ potential function could

be applied to other systems. Lemoy et al (2011) already used it in a typical model of

urban economics dealing with land use and transport. In particular, they extended our

comparison of the potential function with an effective free energy to a comparison with

an effective chemical potential. A second interesting extension of the work presented

in chapter 4 would be a deeper analysis of the individual / collective transition. Going

back to simulations and continuous neighborhood, this transition could be analyzed in

a more standard physics framework. What is the nature of this transition, what are the

critical exponents characterizing it, how does it relate to the usual Ising transition? All

these questions are certainly worth to investigate.

The conclusions we drawn in chapter 5 on the nature of complex systems science

are based on a particular database issued from the Web of Science, and mostly on one

technique: bibliographic coupling. It would hence be interesting to check the robustness

of our conclusions with other databases selected with different criteria than ours, or by

using other techniques for defining a similarity between articles. A possibility could be

to performed co-word analysis, ie defining a similarity based on the nature and number

of words - for example the word present in the titles and abstracts - shared by the

articles.

We hope that the toolbox we presented in chapter 6 will lead other scientists to

build maps of their own institutions, thus fostering ongoing dialogue and praxis in the

institution. The policy issues raised by the utilisation of bibliometrics indices and such

‘maps of sciences’ are certainly not going to disappear and that is why we think it is

important that these tools may be known and accessible to everyone. A collaboration

with other institutions (such as CNRS and CEMAGREF) which are interested in such

global maps have already begun. Future improvement of our toolbox will include the

possibility to prepare different maps for successive time periods, in order to grasp the

evolution of the institution. It might also be interesting to couple the bibliometric data

that can be obtained on the Web of Science with data accounting for the other activities

of the researchers of an institution (teaching, patents, ...).
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Finally, our collaboration with sociologists is still on its way: the main perspective

of the third part of this thesis is to continue to develop and explore the kind of models

we presented. Is it possible to build a solid bridge between physicists’ models starting

from simple agents and Tarde’s theories demanding to start from complex monads?
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Fortunato S, Barthélemy M, 2007. Resolution limit in community detection. Proc Natl

Acad Sci USA 104:36-41.

Fortunato S, 2010. Community detection in graphs. Physics Reports 486:75-174;

Fox-Keller E, 2005. Revisiting “scale-free” networks. BioEssays 27:1060-1068.



BIBLIOGRAPHY 178

Fox-Keller E, 2009. Organisms, Machines, and Thunderstorms, a history of Self-

Organization. Historical studies in the natural sciences 38-39.

Galison P, 1997. Image and Logic: A Material Culture of Microphysics (University Of

Chicago Press).

Gannon F, 2007. Too complex to comprehend? EMBO Rep 8:705.

Gauvin L, Vannimenus J, Nadal JP, 2009. Phase diagram of a Schelling segregation

model. Eur Phys J B 70(2):293-304.

Gilbert N, Pyka A, Ahrweiler P, 2001. Innovation Networks - A Simulation Approach

Journal of Artificial Societies and Social Simulation 4(3).

Gillespie DT, 1977. Exact Stochastic Simulation of Coupled Chemical Reactions. J Phys

Chem 81(25):2340-2361.

Girvan M, Newman MEJ, 2004. Finding and evaluating community structure in net-

works. Phys Rev E 69:026113.

Glass L, 2001. Synchronization and rhythmic processes in physiology. Nature 410:277-

284.

Goodstein D, 1985. States of Matter (Dover Publications).

Grauwin S, Bertin E, Lemoy R, Jensen P, 2009a. Competition between collective and

individual dynamics. Proc Natl Acad Sci USA 106:20622-20626.

Grauwin S, Goffette-Nagot F, Jensen P, 2009b. Dynamic models of residential segrega-

tion: brief review, analytical resolution and study of the introduction of coordination.

GATE Working Paper (available at ftp://ftp.gate.cnrs.fr/RePEc/2009/0914.pdf).

Grauwin S, Goffette-Nagot F, Jensen P, 2011. Dynamic models of residential segregation:

an analytical solution. Revised & Resubmitted to J Pub Econ

Grauwin S et al, 2011. Complex systems science: dreams of universality, reality of

interdisciplinarity. Submitted.

Hart S, Mas-Colell A, 1989. Potential, value and consistency. Econometrica 57:589-614.

Hayden EC, 2010. Life is complicated. Nature 464:664-667.

Holland, JH, 2000. Building Blocks, Cohort Genetic Algorithms and Hyperplane-Defined

Functions. Evolutionary Computation 8(4):373-391.



BIBLIOGRAPHY 179

Holme P, Newman MEJ, 2006. Nonequilibrium phase transition in the coevolution of

networks and opinions. Physical Review E 74(5):56108.

Iceland J, Scopilliti M, 2008. Immigrant residential segregation in US metropolitan areas.

1990–2000. Demography 45:79-94.
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Appendix A

Annex to Chapter 2

A.1 Proof of Proposition 1

In this section, we place ourselves in a bounded neighborhood description.

Let us first prove the first part of 1, that is that any aggregate function F =∑
q∈Q F (Rq, Gq) is a potential function that corresponds to (at least) one pair of utility

functions (uR, uG) of U.

Suppose that F =
∑

q∈Q F (Rq, Gq) is a potential function of the game, where the

intermediate function F is known. Let us assume that an agent is moving from a block

1, characterized by the numbers (R1, G1) ∈ EH+1 of red and green agents who live in

it, to a block 2 characterized similarly by the numbers (R2, G2) ∈ EH of red and green

agents living in it (since there must be at least one vacant location in block 2 for an

agent to move in it, we necessarily have R2 + G2 < H + 1). By definition, the utility

variation of a moving agent must be equal to the variation of F it induces. Hence :

- to cover the cases when the moving agent is a red one: for all (R1, G1) ∈ EH+1

with R1 ≥ 1,

uR(R2, G2) − uR(R1 − 1, G1) =

F (R2 + 1, G2) + F (R1 − 1, G1)− F (R2, G2)− F (R1, G1) (A.1)

- to cover the cases when the moving agent is a green one: for all (R1, G1) ∈ EH+1

185
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with G1 ≥ 1,

uG(R2, G2) − uG(R1, G1 − 1) =

F (R2, G2 + 1) + F (R1, G1 − 1)− F (R2, G2)− F (R1, G1) (A.2)

Taking R2 = G2 = 0 in equations A.1 and A.2, one finds that the utility functions

uR and uG verify for all (R,G) ∈ EH :

uR(R,G)− uR(0, 0) = F (R+ 1, G)− F (R,G)− F (1, 0) + F (0, 0) (A.3)

uG(R,G)− uG(0, 0) = F (R,G+ 1)− F (R,G)− F (0, 1) + F (0, 0) (A.4)

These relations define (up to a constant u(0, 0)) the utility functions the agents

necessarily have if F =
∑

q∈Q F (Rq, Gq) is a potential function of the game. It still

remains to prove that this pair of utility functions belongs to the set U. According to

relations A.3 and A.4, one has for all (R,G) ∈ EH :

uR(R,G)− uR(R,G+ 1) =
(
F (R+ 1, G)− F (R,G)

)
−
(
F (R+ 1, G+ 1)− F (R,G+ 1)

)
=

(
F (R,G+ 1)− F (R,G)

)
−
(
F (R+ 1, G+ 1)− F (R+ 1, G)

)
= uG(R,G)− uG(R+ 1, G)

Hence relation 2.15 holds, which means by definition that the pairs of utility functions

(uR, uG) defined by relations A.3 and A.4 belongs to U. Notice that in our demonstration

no particular constraint has to be assumed on the form of function F . As a consequence,

any aggregate function F =
∑

q∈Q F (Rq, Gq) ∈ F is a potential function of the game

as soon as the pair of agents’ utility functions is chosen so that relations A.3 and A.4 hold.

Let us now prove the second part of proposition 1, which is that to any pair

of utility functions (uR, uG) of U corresponds a potential function of the form F =∑
q∈Q F (Rq, Gq).

Let (uR, uG) ∈ U be a pair of utility functions verifying condition 2.15. Suppose

that F (0, 0), F (0, 1) and F (1, 0) are given and let us define recursively the function F

on EH+1 by the following equations, verified for all (R,G) ∈ EH :

F (R+ 1, G)− F (R,G) = F (1, 0)− F (0, 0) + uR(R,G)− uR(0, 0) (A.5)

F (R,G+ 1)− F (R,G) = F (0, 1) + F (0, 0) + uG(R,G)− uG(0, 0) (A.6)
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The most important thing to notice is that these two relations are consistent with

each other thanks to condition 2.15 that links the two utility functions uR and uG. By

summing Eq. A.5 on R and then Eq.A.6 on G, one finds the following expression for

function F :

F (R,G)− F (0, 0) = R
(
F (1, 0)− F (0, 0)

)
+

R∑
r=1

(
uR(r − 1, 0)− uR(0, 0)

)
+G
(
F (0, 1)− F (0, 0)

)
+

G∑
g=1

(
uG(R, g − 1)− uG(0, 0)

)
(A.7)

or conversely by summing Eq. A.6 on G then Eq.A.5 on R,

F (R,G)− F (0, 0) = R
(
F (1, 0)− F (0, 0)

)
+

R∑
r=1

(
uR(r − 1, G)− uR(0, 0)

)
+G
(
F (0, 1)− F (0, 0)

)
+

G∑
g=1

(
uG(0, g − 1)− uG(0, 0)

)
(A.8)

Hence, since F =
∑

q∈Q F (Rq, Gq) one can obtain, after rearranging the different

terms, a symmetric expression of the potential:

F = |Q|F (0, 0) +NR

(
F (1, 0)− F (0, 0)− uR(0, 0)

)
+NG

(
F (0, 1)− F (0, 0)− uG(0, 0)

)
+

1

2

[ R∑
r=1

(
uR(r − 1, 0) + uR(r − 1, G)

)
+

G∑
g=1

(
uG(0, g − 1) + uG(R, g − 1)

)]
(A.9)

Since the potential can be chosen up to a constant, it is clear from the previous

expression that the choice of F (0, 0), F (0, 1), F (1, 0), uR(0, 0) and uG(0, 0) does not

really matter. This justifies our choice to put them to zero to simplify the generic

expressions of the potential given in Eq. 2.17 and 2.18.

According to Eq A.7, F (R,G) can be interpreted as the sum of the settling utility of R

red and G green agents, these agent settling one by one in an initially empty block, the

red agents first and then the green ones. The same goes for Eq. A.8 while the green

agents settle first, the red coming next. In fact, relation 2.15 ensures that the sum does

not depend on the exact order with which the agents settle (see section 2.3.3 for more

precisions). Hence F (Rq, Gq) can be written as the mean of the settling utilities of the

agents over all possible orders of settlement:
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F (Rq, Gq) =
∑

0≤r≤Rq ,
0≤g≤Gq

(r,g)6=(0,0)

( αR(r, g)

α(Rq, Gq)
uR(r − 1, g) +

αG(r, g)

α(Rq, Gq)
uG(r, g − 1)

)

where α(Rq, Gq) = (Rq +Gq)! is the number of settling orders of the Rq +Gq agent

living in block q, αR(r, g) is the number of such orders in which a red agent settle after

r − 1 red and g green, in which case his utility is uR(r − 1, g), and similarly αG(r, g) is

the number of such orders in which a green agent settles after r red and g − 1 green, in

which case the utility of this agent is uR(r − 1, g).

αR(r, g) is the product of:

• Rq, the number of ways of choosing the rth red settling agent,

•
(
Rq−1
r−1

)(
Gq

g

)
, the number of ways of sharing out the Rq − 1 + Gq other agents -

either before or after this agent,

• (r + g − 1)!, the number of ways of ordering the agents who settle before and

• (Rq +Gq − r − g)!, the number of ways of ordering the agents who settle after.

αG(r, g) can be similarly computed. We thus end up with a new formula for F (Rq, Gq):

F (Rq, Gq) =
∑

0≤r≤Rq , 0≤g≤Gq

(r,g)6=(0,0)

(
Rq
r

)(
Gq
g

)
(r + g − 1)! (Rq +Gq − r − g)!

(Rq +Gq)!

(
r uR(r−1, g) + g uG(r, g−1)

)
(A.10)

A.2 Relation between the potential function F and the

collective utility U

Let us suppose that (uR, uG) ∈ U, and that the potential function of the system can be

expressed as a linear function of the collective utility, ie F({Rq, Gq}) = λU({Rq, Gq}) +

µ. Since the potential function can be defined up to constant, we can take µ = 0.
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Writing the utility functions under the form

uR(R,G) = ξR(R) +

G−1∑
g=0

ξ(R, g)

uG(R,G) = ξG(G) +

R−1∑
r=0

ξ(r,G)

introduced in Eq. 2.19 and 2.20, the relation of proportionality between the potential

and the collective utility can be written as

∑
q

(Rq−1∑
r=0

ξR(r) +

Gq−1∑
g=0

ξG(g) +

Rq−1∑
r=0

Gq−1∑
g=0

ξ(r, g)
)

= λ
∑
q

(
RqξR(Rq − 1) +Rq

Gq−1∑
g=0

ξ(Rq − 1, g) +GqξG(Gq − 1) +Gq

Rq−1∑
r=0

ξ(r,Gq − 1)
)

Since this relation must hold for all {Rq, Gq}, it follows that that for all (R,G) ∈ EH ,

the following holds:

R−1∑
r=0

ξR(r) +

G−1∑
g=0

ξG(g) +

R−1∑
r=0

G−1∑
g=0

ξ(r, g)

= λ
(
RξR(R− 1) +R

G−1∑
g=0

ξ(R− 1, g) +GξG(G− 1) +G
R−1∑
r=0

ξ(r,G− 1)
)
(A.11)

Taking successively G = 0 and R = 0 in that last equation provides three indepen-

dent relations dissociating the three functions ξR, ξG and ξ:

∀R > 0,
∑R−1

r=0 ξR(r) = λRξR(R− 1) (A.12)

∀G > 0,
∑G−1

g=0 ξG(g) = λGξG(G− 1) (A.13)

∀(R,G),∈ EH
∑R−1

r=0

∑G−1
g=0

(
λξ(R− 1, g) + λξ(r,G− 1)− ξ(r, g)

)
= 0 (A.14)

Notice moreover that the convention u(0, 0) = 0 implies ξR(0) = ξG(0) = 0. Let us

also define a = ξR(1), d = ξG(1) and b = ξ(0, 0). Starting from equations A.12 to A.14,
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it is straightforward to prove recursively that

λ = 1/2

∀R > 0, ξR(R) = aR

∀G > 0, ξG(G) = dG

∀(R,G) ∈ EH ξ(R,G) = b

Hence the agents’ utility functions corresponds exactly to those introduced in Eq.

2.26:

uR(R,G) = aR+ bG

uG(R,G) = bR+ dG

The individual utilities are thus necessarily linear in the numbers of similar and

dissimilar neighbors in case the potential function F is proportional to the collective

utility U �

A.3 Calculation of a potential function in Schelling case

Suppose that the agents compute their utility with Schelling utility function (which is

equal to 1 if their fraction of similar neighbors is superior or equal to 0.5, and equal to

0 otherwise). This utility function can be expressed in terms of the number of red and

green neighbors as follows:

uR(R,G) = Θ(R−G) =
1

2
(1 + |R+ 1−G| − |R−G|)

uG(R,G) = Θ(G−R) =
1

2
(1 + |R− 1−G| − |R−G|) (A.15)

where Θ is the Heaviside function defined by: Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0.

Notice that in this example (and in this example only) the convention u(0, 0) + 0 used

in proposition 1 is not respected. The form we choose to write Schelling utility function

imposes uR(0, 0) = uG(0, 0) = 1. It is easy to figure out that this particular pair of

utility functions respect condition 2.15, and is therefore in the set U. Indeed,

uR(R,G)− uR(R,G+ 1) = Θ(R−G)−Θ(R−G− 1) =


0− 0 = 0 if R ≤ G− 1

1− 0 = 1 if R = G

1− 1 = 0 if R ≥ G+ 1
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and

uG(R,G)− uG(R+ 1, G) = Θ(G−R)−Θ(G−R− 1) =


1− 1 = 0 if R ≤ G− 1

1− 0 = 1 if R = G

0− 0 = 0 if R ≥ G+ 1

Hence relation uR(R,G)− uR(R,G+ 1) = uG(R,G)− uG(R+ 1, G) is always verified.

To compute a corresponding potential function, one can refer to the general form

of Eq. A.9 (since we do not use the convention u(0, 0) = 0 in this particular example)

which can be written here as:

F = const+
1

2

∑
q∈Q

[Rq−1∑
r=0

(
uR(r, 0) + uR(r,Gq)

)
+

Gq−1∑
g=0

(
uG(0, g) + uG(Rq, g)

)]

= const+
1

4

∑
q∈Q

[Rq−1∑
r=0

(
3 + |r + 1−Gq| − |r −Gq|

)
+

Gq−1∑
g=0

(
3 + |Rq − 1− g| − |Rq − g|

)]
= const+

1

4

∑
q∈Q

[(
3Rq + |Rq −Gq| −Gq

)
+
(

3Gq + |Rq −Gq| −Rq
)]

= const+
1

2

∑
q∈Q

(
Rq +Gq + |Rq −Gq|

)
= const+

1

2
(NR +NG) +

1

2

∑
q∈Q
|Rq −Gq|

= const′ +
1

2

∑
q∈Q
|Rq −Gq|

A.4 Potential and collective utility in the case of the asym-

metrically peaked utility

Proof of equation 2.37

We have to derive the expression F̃ (S) =
∑S−1

s=0 ξap(s), where{
ξap(s) = 2s/H if s ≤ H/2
ξap(s) = 2−m− 2(1−m)s/H if s > H/2



APPENDIX A. ANNEX TO CHAPTER 2 192

For S − 1 ≤ H/2, it is straightforward to write:

F̃ (S) =
2

H

S−1∑
s=0

s =
(S − 1)S

H
(A.16)

For S − 1 > H/2, one has

F̃ (S) =
2

H

H/2∑
s=0

s+ (2−m)(S − 1−H/2)− (1−m)
2

H

S−1∑
s=H/2+1

s

=
2

H
(2−m)

H/2∑
s=0

s+ (2−m)(S − 1−H/2)− (1−m)
2

H

S−1∑
s=0

s

= (2−m)(H/4 + 1/2 + S − 1−H/2)− (1−m)
(S − 1)S

H

= (2−m)

[
S −H/4− 1/2− (S − 1)S

H

]
+

(S − 1)S

H

=
(S − 1)S

H
− (2−m)

1

H

[
−
(
S − H

2

)(
H

2

)
− (S − 1)

(
H

2

)
+ (S − 1)S

]
=

(S − 1)S

H
− 2−m

H

(
S − H

2
− 1

)(
S − H

2

)
(A.17)

Thanks to the Heaviside function both results can then be written under the general

form:

F̃ (S) =
(S − 1)S

H
− 2−m

H

(
S − H

2
− 1

)(
S − H

2

)
Θ

(
S − H

2
− 1

)
(A.18)

Proof of equations 2.38 and 2.39

The computation of ∆F in relation 2.38 is based on the expression of F̃ (S) (equation

A.18), which gives, with K ∈ {0, 1, ...,H/2}:

∆F = 2F̃ (H/2 + 1 +K) + 2F̃ (H/2−K)− 2F̃ (H/2 + 1)− 2F̃ (H/2)

=
2

H

[(
H

2
+K

)(
H

2
+K + 1

)
+

(
H

2
−K − 1

)(
H

2
−K

)
−
(
H

2

)(
H

2
+ 1

)
−
(
H

2
− 1

)(
H

2

)]
− 2(2−m)

H
K(K + 1)

=
2m

H
K(K + 1)
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In the same way,

∆U = 2Ũ(H/2 + 1 +K) + 2Ũ(H/2−K)− 2Ũ(H/2 + 1)− 2Ũ(H/2)

=
4

H

[(
H

2
+K

)(
H

2
+K + 1

)
+

(
H

2
−K − 1

)(
H

2
−K

)
−
(
H

2

)(
H

2
+ 1

)
−
(
H

2
− 1

)(
H

2

)]
− 4(2−m)

H
K(H/2 +K + 1)

=
8

H
K(K + 1)− 4(2−m)

H
K(H/2 +K + 1)

=
4K

H

(
m(H/2 +K + 1)−H

)
= 2∆F − 2(2−m)K (A.19)

A.5 Proof of Proposition 2

In this section, we place ourselves in a continuous neighborhood description.

Constraint on the form of the utility functions

Suppose that there exists a potential function F : X → R, and let uR : EH ≡
{(R,G), 0 ≤ R + G ≤ H} → R and uG : EH → R be the red and green agents’

utility functions. We want here to investigate if the existence of the potential function

imposes any constraint on the form of these utility functions.

Suppose as shown on Fig A.1 that A, B and C are three cells of the lattice such that

cells B and C are in each other’s neighborhood while cell A is neither in the neighborhood

of cell B or C. Let x be a given state in which cells A and C are each occupied by a

red agent while cell B is empty. We denote by (RA, GA) ∈ EH , (RB, GB) ∈ EH ,

(RC , GC) ∈ EH the number of red and green agents within the neighborhood of cells A,

B and C in state x.1

Let y be the state obtained when the red agent on cell A moves on cell B and z the

state obtained if next the red agent on cell C moves to the now empty cell A. The system

goes back from state z to state x by a move of the red agent in cell B to cell C. The

function F being a potential function, the following relations hold (taking into account

that the move of the agents change the number of red agents in the neighborhoods of

1Beware of the restrictions imposed on the values of (RB , GB) and (RC , GC) due to the overlapping
of the neighborhoods of cells B and C.
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Figure A.1: Example of configuration where the neighborhood of cells B and C overlap while those
of cells A and D do not overlap with any of the other enlightened cells. The neighborhood of a cell is
composed here by the H = 24 nearest cells surrounding it.

cells B and C):

F(y)−F(x) = ∆xyu = uR(RB, GB)− uR(RA, GA)

F(z)−F(y) = ∆yzu = uR(RA, GA)− uR(RC + 1, GC)

F(x)−F(z) = ∆zxu = uR(RC , GC)− uR(RB − 1, GB)

Summing all these relations yields

uR(RB, GB)− uR(RB − 1, GB) = uR(RC + 1, GC)− uR(RC , GC)

If the values of (RB, GB) and (RC , GC) were independent, it would be straightfor-

ward to prove that for all values of (R,G) ∈ EH such that R ≥ 1:

uR(R,G)− uR(R− 1, G) = const

We leave to the sagacity of the reader to verify that the restrictions on the values of

(RB, GB) and (RC , GC) due to the overlapping of the neighborhoods of cells B and C
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do not change this result. Hence ∀(R,G) ∈ EH , ∃ a ∈ R

uR(R,G) = uR(0, G) + aR (A.20)

The same kind of reasoning can similarly prove that ∀(R,G) ∈ EH , ∃ d ∈ R:

uG(R,G) = uG(R, 0) + dG (A.21)

Suppose now as shown on Fig A.1 that A, B, C and D are four cells of the lattice

such that cells B and C are in each other’s neighborhood while the neighborhoods of

cells A and D do not overlap the neighborhood of any of the other three cells. Let x be a

given state in which cell A is occupied by a red agent while cell D is occupied by a green

agent and cells B and C are empty. We denote by (RA, GA) ∈ EH , (RB, GB) ∈ EH ,

(RC , GC) ∈ EH and (RD, GD) ∈ EH the number of red and green agents within the

neighborhood of cells A, B, C and D in state x.

Let y be the state obtained when the red agent on cell A moves to cell B, z the state

obtained if next the green agent on cell D moves to cell C, w the state obtained if the

red agent on cell B next goes back to cell A. The system goes back from state w to state

x by a move of the green agent in cell C to cell D. The function F being a potential

function, the following relations hold (taking into account that the move of the agents

change the number of red agents in the neighborhoods of cells B and C):

F(y)−F(x) = ∆xyu = uR(RB, GB)− uR(RA, GA)

F(z)−F(y) = ∆yzu = uG(RC + 1, GC)− uG(RD, GD)

F(x)−F(z) = ∆zxu = uR(RA, GA)− uR(RB, GB + 1)

F(x)−F(z) = ∆zxu = uG(RD, GD)− uG(RC , GC)

Summing all these relations yields

uR(RB, GB + 1)− uR(RB, GB) = uG(RC + 1, GC)− uG(RC , GC)

Once again, one can check that while the values of (RB, GB) and (RC , GC) are not

independent, the intuitive results holds, which is ∀(R,G) ∈ EH−1, ∃ b ∈ R:

uR(R,G+ 1)− uR(R,G) = uG(R+ 1, G)− uG(R,G) = b (A.22)

To summarize, the existence of the potential function imposes the existence of three
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real constants (a, b, d) such that the utility functions take the bilinear form:

uR(R,G) = uR(0, 0) + aR+ bG

uG(R,G) = uG(0, 0) + bR+ dG (A.23)

Reciprocal proof

Suppose that the utility of red and green agents are given by Eqs. A.23. Our goal is here

to demonstrate that these utility function being given, there exist a potential function

of the system.

Suppose that an agent moves from a neighborhood composed of R red and G green

agents to a neighborhood composed of R′ red and G′ green agents. If the moving agent

is red, then the variation of his utility can be written as

∆u = uR(R′, G′)− uR(R,G) = a(R′ −R) + b(G′ −G)

while the variation of the collective utility is:

∆U = a(R′ −R) + b(G′ −G) which is the variation of the moving agent utility

+ G′b−Gb which is the sum of the variation of the other green agents

+ R′a−Ra which is the sum of the variation of the other red agents

= 2a(R′ −R) + 2b(G′ −G) = 2∆u

Similarly, if the moving agent is green, the variation of his utility can be written as

∆u = uG(R′, G′)− uG(R,G) = b(R′ −R) + d(G′ −G)

while the variation of the collective utility is:

∆U = b(R′ −R) + d(G′ −G) which is the variation of the moving agent utility

+ G′d−Gd which is the sum of the variation of the other green agents

+ R′b−Rb which is the sum of the variation of the other red agents

= 2b(R′ −R) + 2d(G′ −G) = 2∆u

Hence, whatever the starting configuration and whatever the move, the variation in

utility of the moving agent is always half the variation of the collective utility, a global
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function depending on the configuration of the city. Hence, if the utility functions of

the agents are given by Eqs. A.23, the function F : x→ U(x)/2 is a potential function

of the system �



Appendix B

Annex to Chapter 3 - Collective
vs Individual Dynamics

B.1 Phase separation

Focusing on the large H case, the problem gets back to finding the set {ρq} which

maximize the potential F (x) = H
∑

q f(ρq) with the constraint
∑

q ρq fixed. We are

interested to know whether the stationary state is statistically homogeneous or inho-

mogeneous. Following standard physics textbooks methods, the homogeneous state at

density ρ0 is unstable against a phase separation if there exists two densities ρ1 and ρ2

such that

γf(ρ1) + (1− γ)f(ρ2) > f(ρ0). (B.1)

The parameter γ (0 < γ < 1) corresponds to the fraction of blocks that would have a

density ρ1 in the diphasic state, while a fraction 1 − γ would have a density ρ2. This

condition simply means that the value of the sum
∑

q f(ρq) is higher for the diphasic

state than for the homogeneous state, so that the diphasic state has a much larger

probability to occur. Geometrically, the inequality (B.1) corresponds to requiring that

f(ρ) is a non-concave function of ρ. The values of ρ1 and ρ2 are obtained by maximizing

γf(ρ′1) + (1 − γ)f(ρ′2) over all possible values of ρ′1 and ρ′2, with γ determined by the

mass conservation γρ′1 + (1− γ)ρ′2 = ρ0.

Further, the equilibrium coexistence points to a given temperature can be determined

by a double tangent method where the equilibrium densities of the individual phase fall

on the same tangent line of f(ρ). The first derivatives of f are equivalent at these two

198
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Figure B.1: Phase separation. The system of density ρ0 splits into two phases of
densities ρ1 and ρ2 if it increases its potential. The standard double tangent construction
determines the densities of the two phases at equilibrium.

densities and also equal to the slope connecting these two points, ie,

f(ρ2)− f(ρ1)

ρ2 − ρ1
= f ′(ρ1) (B.2)

f(ρ2)− f(ρ1)

ρ2 − ρ1
= f ′(ρ2) (B.3)

For the computation of functions depending on the global state of the city such as the

normalized collective utility U∗(x) = U(x)/
∑

q nq, two cases have to be distinguished

• The case when there is one phase of density ρ0. In this case, the utility of each

agent is equal to the normalized collective utility :

U∗(x) = u(ρ0) (B.4)

• The case when there are two phases of densities ρ1 and ρ2. In this case, the

normalized collective utility can be written as

U∗(x) = γ
ρ1

ρ0
u(ρ1) + (1− γ)

ρ2

ρ0
u(ρ2) (B.5)

with the conservation of the number of agents providing the value of the fraction

γ = (ρ2 − ρ0)/(ρ2 − ρ1) of blocks of density ρ1.
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B.2 Asymmetrically peaked utility function

The specific form of the utility function is an input of the model, and it can be postulated

on a phenomenological basis, or rely on a theory of the interactions among agents. To

illustrate the influence of the parameter α, we choose to work with the asymmetrically

peaked utility function defined as:

u(ρ) = 2ρ if ρ ≤ 1

2

u(ρ) = m+ 2(1−m)(1− ρ) if ρ >
1

2

where m < 1 is a real parameter.

It is straightforward to verify that the function f(ρ) reads for ρ ≤ 1/2

f(ρ) = −T
(
ρ ln ρ+ (1− ρ) ln(1− ρ)

)
+ (1 + α)ρ2 (B.6)

and similarly, for ρ > 1/2

f(ρ) = −T
(
ρ ln ρ+(1−ρ) ln(1−ρ)

)
−(1+α)(1−m)ρ2+(2−m)ρ−(1−α)(2−m)/4 (B.7)

B.2.1 Limiting case T goes to 0

Let us first consider the limiting case T → 0. From the above expression of f(ρ), it turns

out that f(ρ) is convex for 0 < ρ < 1/2 and concave for 1/2 < ρ < 1, as 1 −m > 0.

Thanks to Fig. B.2, it is pretty clear that there exists ρ2(α,m) > 1/2 such that a phase

of mean density ρ0 is stable if ρ0 ≥ ρ2(α,m). In the opposite case, a phase separation

occurs, and the densities ρ1 and ρ2 can be computed as previously explained.

However, in the limit T = 0, the line joining ρ1 and ρ2 does not correspond to a

double tangent. Due to the concavity of f on [0, 1/2], one has ρ1 = 0, but f ′(0) = 0 while

the slope of the line is negative. To determine ρ2, we first assume that 1/2 < ρ2 < 1, so

that the line joining ρ1 = 0 to ρ2 is a tangent to f at ρ2, which is expressed as:

f ′(ρ2) =
1

ρ2

(
f(ρ2)− f(0)

)
, (B.8)

yielding

ρ2 =
1

2

√
1− α
1 + α

2−m
1−m

. (B.9)
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Figure B.2: Graphic representation of the f function for m = 0.7, T = 0 and α =
0, 0.3, 0.5, 0.7, 1. The dash lines represent the part of the curves merging with their
concave hulls. The solid line hence corresponds to the range of mean densities ρ0 for
which there is phase separation.

From Eq. (B.9), we find that ρ2 is in the range 1/2 < ρ2 < 1 if (and only if) the

following condition is satisfied:

3m− 2

6− 5m
= αt(m) < α < αc(m) =

1

3− 2m
. (B.10)

Hence for α ≥ αc(m), ρ2 sticks to the value ρ2 = 1/2. Similarly, for α ≤ αt(m), one

has ρ2 = 1. These results are illustrated on Fig B.3. The dependency of the outcome

with the mean density of agents is quite simple. For ρ0 < ρ2(α,m), two kinds of blocks

coexist in the stationary states: empty blocks and blocks of density ρ2. The collective

utility can then be written as

U∗(x) = u(ρ2) = 2−m−
√

1− α
1 + α

(2−m)(1−m) (B.11)

This expression clearly increases with α, as expected.

In the opposite case for which ρ0 ≥ ρ2(α,m), the density of the blocks in the sta-

tionary states is homogeneous and the collective utility is then

U∗(x) = u(ρ0) = 2−m− 2(1−m)ρ0 (B.12)

Notice furthermore that the independence of collective utility with the tax parameter

α observed on Fig 3 of the article for α > αc and α < αt correspond to domains for
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Figure B.3: Values of ρ2(α,m) at T = 0. If ρ0 < ρ2(α,m), the system of density ρ0

splits into two phases of densities ρ1 = 0 and ρ2 = ρ2(α,m) to increase the value of the
potential F (x). Otherwise, the equilibrium corresponds to the homogeneous phase of
density ρ0.

which the density ρ2 has reached a saturation value (respectively 1 or 1/2).

The phase diagrams presented on Fig. B.4 give a more precise idea of the influence

of the parameter ρ0 over the different phases in the stationary states.

B.2.2 Finite temperatures

Finally, we turn to the analysis of the model for finite values of T and show that

the behavior of the model remains qualitatively similar to that obtained previously

in the T → 0 limit. The high T case is the simplest to analyze. For 2T/(1 + α) ≥
max[0,1]

(
4ρ(1− ρ)

)
= 1, f is concave on the two intervals [0, 1/2[ and ]1/2, 1] where it

is regular. One can moreover verify that at the singular point ρ = 1/2, f ′(1/2+) >

f ′(1/2−), which ensures that f is concave on the whole interval [0, 1]. Hence for

T/(1 + α) > 1/2, there is a single phase of density ρ0.

In the opposite case 0 < T/(1 + α) < 1/2, the analysis is somewhat similar to the

zero T limit. The function f is convex on the interval

1

2

(
1−

√
1− 2T

1 + α

)
< ρ <

1

2
(B.13)

and concave on the complementary interval. As f(ρ) has an infinite slope in ρ = 0 and

ρ = 1, the densities ρ1 and ρ2 satisfy 0 < ρ1 < 1/2 and 1/2 ≤ ρ2 < 1. Assuming that
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Figure B.4: Phase diagrams at T = 0 for different values of m. For ρ0 > 1/2, phase
separation is always a disadvantage in terms of collective utility. The homogeneous
phase, which maximizes the collective utility is stable from a certain value of α. For
ρ0 ≤ 1/2, the collective utility is maximal for a separation into two phases of densities
ρ1 = 0 and ρ2 = 1/2, a separation obtained in the stationary states when α > 1/(3−2m).
For lower values of the tax, phase separation is a disadvantage.

ρ2 = 1/2, the density ρ1 is given by the implicit expression

(1− 2ρ1)2

ln
(
4ρ1(1− ρ1)

) = − 2T

1 + α
. (B.14)

Then the assumption ρ2 = 1/2 is consistent as long as f ′(1/2+) ≥ (f(1/2)−f(ρ1))/(1/2−
ρ1), which can be rewritten as

ϕ(ρ1) ≥ 1− α(3− 2m)

1 + α
(B.15)

where the function ϕ is defined by
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Figure B.5: Phase diagrams at m = 0.8 for different values of T . Increasing the
“temperature” T tends to favour homogeneous states. For T → 0, the phase diagram is
affected only for only extremal values of ρ0, as can be expected from the entropic term
Ts(ρ) = −Tρ ln ρ − T (1 − ρ) ln(1 − ρ). As T is increased, all the diagram is affected
by the entropic term. Compared to the T = 0 case, the main change at low T is the
apparition of a second homogeneous phase for ρ0 < 1/2. But whereas for ρ0 > 1/2
homogeneity corresponds to the best interest of the agents, for ρ0 < 1/2, collective
utility is not maximized in an homogeneous city. This homogeneous domain is here
purely induced by noise. Note that an increase in α tends to reduce this domain while
it tends to increase the homogeneous domain for ρ0 > 1/2.

ϕ(ρ) = 4ρ− 1 + (1− 2ρ)2 ln ρ− ln(1− ρ)

ln(4ρ(1− ρ))
. (B.16)

Note that the inequality (B.15) is automatically verified if α ≥ 1/(3 − 2m), as the

function ϕ is positive. If the inequality (B.15) is not satisfied, then ρ2 > 1/2, and the

values of ρ1 and ρ2 are solutions of two coupled non-linear equations, that can be solved

numerically.

The phase diagrams presented on Fig B.5 give a idea of the influence of the “tem-

perature” T over the stationary states of the system.
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B.3 Model with two types of agents

B.3.1 Bases of the model

Notations

In this section, describing a city inhabited by two types of agents (that we refer to as

red and green agents), we will note:

Q the number of blocks the city is divided in, each block being composed of H cells;

x a configuration of the city, corresponding to the knowledge of the state (empty,

red or green) of each cell;

nqr(x) and nqg(x) the numbers of red and green agents living in the block q;

u(nqr/H) (resp u(nqg/H)) the utility of a red (resp green) agent living in block q,

with u(0) = 0 by convention;

N0 =
∑

q nq ≤ QH the total number of agents;

NR =
∑

q nqr the total number of red agents (idem for the green ones);

U(x) =
∑

q(nqru(nqr/H) + nqgu(nqg/H)) the total utility in configuration x;

L(x) =
∑

q

(∑nqr

m=0 u(m/H) +
∑nqg

m=0 u(m/H)
)

the value of the “linking function”

in configuration x.

0 ≤ α ≤ 1 the tax parameter.

Dynamic rule

At each iteration, one picks at random an agent and a vacant cell. The agent moves in

this empty cell with a probability

Pr{move} =
1

1 + e−(∆u+α(∆U−∆u))/T
=

1

1 + e−((1−α)∆u+α∆U)/T
(B.17)

where ∆u is the variation of utility which the chosen agent can achieve by mov-

ing, ∆U is the variation of global utility which would result from this same move and

0 ≤ α ≤ 1 is an “altruism” parameter (for α = 0 the move only depends on the egoistic

interest of the agent, for α = 1 it only depends on the collective interest).

A potential function

Let us define two states x and y as immediately communicating states (ICS) if we can

switch from state x to state y by moving one single agent. Whatever the form of the
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utility function u, one has for every move ∆u = ∆L. The transition probability from a

configuration x to a configuration y in one iteration can thus be written:

Pxy = γxy
1

1 + e−((1−α)(L(y)−L(x))+α(U(y)−U(x)))/T

= γxy
e((1−α)L(y)+αU(y))/T

e((1−α)L(x)+αU(x))/T + e((1−α)L(y)+αU(y))/T

where γxy takes into account the probability to pick the right agent and the right

vacant cell that allow to pass from x to y:

γxy =
1

N0(QH −N0)
if x and y are ICS, (B.18)

γxy = 0 if x and y are not ICS. (B.19)

Since the function

Π(x) =
e(1−α)L(x)+αU(x)∑
z e

(1−α)L(z)+αU(z)
(B.20)

is the unique normalized function that verifies for all x and y the detailed balance:

Π(x)Pxy = Π(y)Pyx (B.21)

one can identify Π as the stationary distribution function.

There is H!
nR!nG!(H−nR−nG)! ways of ordering nR undifferentiated red agents and nG

undifferentiated green agents in H cells. Indeed, there is H!
(nR+nG)!(H−nR−nG)! ways of

placing the vacant cells and (nR+nG)!
nR!nG! ways of placing the agents’ colors. So one can

compute the stationary distribute function for the coarse-grained states {ρq}:

Π({nq}) =
1

Z

∏
q

H!

nR!nG!(H − nR − nG)!
e

(
(1−α)L(x)+αU(x)

)
/T (B.22)

=
1

Z
eH/T

∑
q f(nq ,T,H) (B.23)

where
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f(nR, nG, T,H) = − T
H

ln
(nR!nG!(H − nR − nG)!

H!

)
+ α

nR
H
uR

(nR
H

)
+ α

nG
H
uG

(nG
H

)
+ (1− α)

1

H

nR∑
m=0

uR

(m
H

)
+ (1− α)

1

H

nG∑
m=0

uG

(m
H

)
The configurations that maximize the potential F (x) =

∑
q f(nR, nG, T ) are the

more probable to come up. In the limit H/T →∞, these configurations are even the only

ones that will appear in the stationary states (since Π(x)/Π(y) = eH/T (F (x)−F (y)) → 0

for F (x)− F (y) < 0 and H/T →∞).

Continuous limit

In the limit H →∞, by keeping constant the mean density ρ0 = N0/H and the density

of each block ρq = nq/H (ρq hence becoming a continuous variable), one has thanks to

Stirling’s formula:

ln
(nR!nG!(H − nR − nG)!

H!

)
' H

(
ρqR ln ρqR + ρqG ln ρqG + (1− ρqR − ρqG) ln(1− ρqR − ρqG)

)
and the stationary distribution can be written as:

Π({ρq}) =
1

Z

∏
q

eH/Tf(ρqR,ρqG,T ) (B.24)

where the “block-potential” is

f(ρR, ρG, T ) = −TρR ln ρR − TρG ln ρG − T (1− ρR − ρG) ln(1− ρR − ρG)

+ αρRuR(ρR) + αρGuG(ρG)

+ (1− α)

∫ ρR

0
uR(ρ′)dρ′ + (1− α)

∫ ρG

0
uG(ρ′)dρ′

The problem hence gets back to find the set {ρqR, ρqG} which maximize the potential

F =
∑

q f(ρqR, ρqG, T ) with the constraints
∑

q ρqR = Qρ0R and
∑

q ρqG = Qρ0G.

If one compares this result with the result of the one population model, it can be

seen that for a zero temperature the ‘two populations model’ is obtained by summing
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two ‘one population models’, one for each color. But at a non-zero temperature the

−T (1− ρR − ρG) ln(1− ρR − ρG) term links both populations.

B.3.2 Homogeneous-inhomogeneous transitions

The homogeneous phase may be unstable with respect to phase separation.

Let us split the system into two phases of densities ρ1 = (ρ1R, ρ1G) and ρ2 = (ρ2R, ρ2G).

The constraint that the overall densities of particles/agents are ρ0 = (ρ0R, ρ0G) is ex-

pressed by the lever rule: {
Q1 +Q2 = Q

Q1ρ1 +Q2ρ2 = Qρ0

where Q1 and Q2 are respectively the number of blocks of density ρ1 and ρ2. The

homogeneous phase is stable against phase separation if for all ρ1 and ρ2

Q1f(ρ1) +Q2f(ρ2) < Qf(ρ0) (B.25)

Geometrically, this inequality corresponds to requiring that f(ρ) is a concave function.

When the concavity requirement is violated, phase separation will occur for certain

values of ρ0. The equilibrium densities ρ1 and ρ2 are such that the line that joins the

points (ρ1, f(ρ1)) and (ρ2,f(ρ2)) is part of the concave hull of the function.

In the 2 populations model there is a possibility that the system is split into 3 phases

of densities ρ1 = (ρ1R, ρ1G), ρ2 = (ρ2R, ρ2G) and ρ3 = (ρ3R, ρ3G). The constraint that

the overall densities of particles/agents are ρ0 = (ρ0R, ρ0G) is now:
Q1 +Q2 +Q3 = Q

Q1ρ1R +Q2ρ2R +Q3ρ3R = Qρ0R

Q1ρ1G +Q2ρ2G +Q3ρ3G = Qρ0G

where Q1, Q2 and Q3 are respectively the number of blocks of density ρ1, ρ2 and ρ3.

And the equilibrium densities ρ1, ρ2 and ρ3 are now such that the plane that joins the

points (ρ1, f(ρ1)), (ρ2,f(ρ2)) and (ρ3,f(ρ3)) is part of the concave hull of the function.

For some values of the parameters there may even be 4 points of the same plane belonging

to the f function and its concave hull. In this case there will be a continuum of possible

values of Q1, Q2, Q3 and Q4 verifying the global density constraints.
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B.3.3 With a peaked utility function

Expression of the f function

Let us consider for both populations the asymmetrically peaked utility function defined

for m < 1 as:

u(ρ) = 2ρ if ρ ≤ 0.5

u(ρ) = m+ 2(1−m)(1− ρ) if ρ > 0.5

For ρR ≤ 0.5 and ρG ≤ 0.5, the f function is:

f(r, g) = −T
(
r ln r − g ln g − (1− r − g) ln(1− r − g)

)
+ (1 + α)(r2 + g2)

∂f

∂r
(r, g) = −T

(
ln r − ln(1− r − g)

)
+ 2(1 + α)r

∂2f

∂r2
(r, g) = −T/r − T/(1− r) + 2(1 + α)

(Partial derivatives relative to g are obtained by replacing g ↔ r)

For ρR > 0.5 and ρG ≤ 0.5:

f(r, g) = −T
(
r ln r + g ln g + (1− r − g) ln(1− r − g)

)
− (1 + α)(1−m)r2 + (2−m)r

− (1− α)(2−m)/4 + (1 + α)g2

∂f

∂r
(r, g) = −T

(
ln r − ln(1− r − g)

)
− 2(1 + α)(1−m)r − (2−m)

∂2f

∂r2
(r, g) = −T/r − T/(1− r − g)− 2(1 + α)(1−m)

∂f

∂g
(r, g) = −T

(
ln g − ln(1− r − g)

)
+ 2(1 + α)r

∂2f

∂r2
(r, g) = −T/g − T/(1− r − g) + 2(1 + α)

The situation ρR ≤ 0.5 and ρG > 0.5 can be obtained by replacing g ↔ r in the

previous paragraph.

For T = 0

f is concave in ρR and ρG for ρR and ρG ≤ 0.5. For ρR > 0.5 and ρG ≤ 0.5, f is concave

in ρR and convex in ρG (and conversely for ρR ≤ 0.5 and ρG > 0.5, f is concave in ρG
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and convex in ρR).

The concave hull of the function has a different form for different values of the

parameters α and m:

• for α ≥ 1
3−2m the points

(
0, 1

2 , f(0, 1
2)
)

and
(

1
2 , 0, f(1

2 , 0)
)

belong to the concave

hull whereas for α ≤ 1
3−2m they are replaced by the points

(
0, ρ2, f(0, ρ2)

)
and(

ρ2, 0, f(ρ2, 0)
)

with ρ2(α,m) = 1
2

√
1−α
1+α

2−m
1−m (see the resolution of the one popu-

lation model).

• for α ≥ m
4−3m the point

(
1
2 ,

1
2 , f(1

2 ,
1
2)
)

belongs to the concave hull whereas for

α < m
4−3m it does not.

So there are three possible situations, shown on figure B.6:

Figure B.6: The domains of different concave hulls for different values of m and α

• α ≥ 1
3−2m (which will be case 1)

• m
4−3m ≤ α ≤

1
3−2m (case 2)

• α < m
4−3m (case 3)

Case 1

The number and composition of the phases depend on the global densities ρ0 = (ρ0R, ρ0G)

(see figure B.7).
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In part A of figure B.7, the system separates into 3 or 4 phases of densities (0, 0), (0, 1
2),

Figure B.7: Domains of different phases for different global densities in case 1

(1
2 , 0) and (1

2 ,
1
2) in respective quantities Q1, Q2, Q3 and Q4, which must verify

Q2 +Q4 = 2Qρ0G

Q3 +Q4 = 2Qρ0R

Q1 +Q2 +Q3 +Q4 = Q

The system can build either 3 or 4 phases because red and green agents do not ”see”

each other: their utility is maximal when half of the block is filled with agents of their

color, the other half being either empty or filled with agents of the other color.

In part B, the system separates into 2 phases of densities (ρ0R−ρ0G
1−2ρ0G

, 0) and (1
2 ,

1
2) with

respective weights Q1 = Q(1− 2ρ0G) and Q2 = 2Qρ0G.

And symmetrically in part C the system separates into 2 phases of densities (0, ρ0G−ρ0R
1−2ρ0R

)

and (1
2 ,

1
2) with respective weights Q1 = Q(1− 2ρ0R) and Q2 = 2Qρ0R.

Case 2

The number and composition of the phases depend again on the global densities as

shown on figure B.8.

In part A of figure B.8, the system separates into 3 phases of densities (0, 0), (0, ρ2(α,m))

and (ρ2(α,m), 0) in respective quantities Q1 = Q(1 − ρ0R+ρ0G
ρ2

), Q2 = Qρ0G
ρ2

and Q3 =

Qρ0R
ρ2

.
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Figure B.8: Domains of different phases for different global densities in case 2

In part B the system is split into 3 phases of densities (0, ρ2), (ρ2, 0) and (1
2 ,

1
2) in

respective quantities Q1 = Qρ2(2ρ0G−1)+ρ0R−ρ0G

2ρ2(ρ2−1) , Q2 = Qρ2(2ρ0R−1)+ρ0G−ρ0R

2ρ2(ρ2−1) and Q3 =

Qρ2−ρ0R−ρ0G
ρ2−1 .

In part C the phase decomposition is the same as in part B of case 1 and in part D it

is the same as in part C of case 1.

Case 3

The different domains of phase decomposition are shown on figure B.9.

In part A of figure B.9 the system separates into 3 phases like in part A of case B.

In part B there are 2 phases of densities (ρ0R + ρ0G, 0) and (0, ρ0R + ρ0G) in respective

quantities Q1 = Q ρ0R
ρ0R+ρ0G

and Q2 = Q ρ0G
ρ0R+ρ0G

.

Interpretation

At zero temperature, the two populations model is indeed very similar to the one pop-

ulation model: both populations of agents see each other only as occupied cells (the

utility of a red agent does not depend on the number of green agents in the block).

The only difference with two superimposed one population models lies in the fact that

blocks with density (1
2 ,

1
2) are full of agents with maximal utilities and cannot take in

more agents, so that for certain values of the global densities, in cases 1 and 2, there
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Figure B.9: Domains of different phases for different global densities in case 3

is a phase of half-red, half-green blocks and another phase containing the excess of the

more numerous type of agents with a higher density (and thus an inferior utility).

For T > 0

At high temperatures, the entropic term of the f function is the leading term, and as it

is a concave one, the function is concave everywhere : for any density ρ0 = (ρ0R, ρ0G),

the system stays in an homogeneous phase because of the strong noise.

For intermediary values of the temperature, the system has a behavior between a noise

driven one and the one it has at zero temperature, but we will not further study it here.
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Annex to Chapter 5 - Complex
Systems Science, Dreams and

Reality

C.1 “Self-Organization” subfields

Community size %(SO)

GrowthSO 1192 34.64
SOM 3495 33.88
SOC 4447 33.48
NanoFabr 457 31.29
CytoskSO 651 29.19
PattformSO 691 26.19
TDA 628 25.48
MolecularSO 2684 24.25
SwarmSO 608 23.52

Community size %(SO)

NanoSO 1995 18.85
CondPolymers 471 18.05
SurfSO 1511 15.55
QDots 921 14.12
CA 846 8.98
PattForm 1403 8.34
NN 2902 6.48
NeuralSynchr 1451 5.86
Econophys 738 5.42

Table C.1: Communities in which more than 5% of the articles use a keyword containing
“self” and “organ*”. Examples of such keywords are: self-organisation, self organization,
self organizing, self organizing maps, self organized systems, self organized molecules,...

214
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C.2 Most networking references

Abramowitz, M., & Stegun, IA. 1968. Handbook of Mathematical Functions. Dover

Publications.

Alberts, Bruce, Bray, Dennis, Lewis, Julian, Raff, Martin, Roberts, Keith, & Watson,

James D. 1994. Molecular Biology of the Cell.

Chomczynski, P., & N., Sacchi. 1987. Single-step method of RNA isolation by acid

guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162,

156–159.

Cohen, J. 1988. Statistical power analysis for the behavioral sciences. Lawrence

Erlbaum.

Feller, W. 1958. An introduction to probability theory and its applications. Wiley.

Hebb, D.O. 1949. The organization of behavior: A neuropsychological approach.

Wiley.

Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences of the United

States of America, 79(8), 2554.

Kauffman, S.A. 1993. The origins of order: Self organization and selection in

evolution. Oxford University Press, USA.

Lakowicz, JR. 1999. Principles of Fluorescence spectroscopy. Kluwer Academic/Plenum

Publisher.

Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2),

431–441.

Metropolis, N., Rosenbluth, AW, Rosenbluth, MN, Teller, AH, & Teller, E. 1953.

Equations of state calculated by fast computing machines. Journal of Chemical Physics,

21, 1087–1092.

Nicolis, G., & Prigogine, I. 1977. Self-organization in nonequilibrium systems. Wiley

New York.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., et al. 1992. Numer-

ical recipes. Cambridge university press.

Shannon, C.E. 1948. A mathematical theory of communication. The Bell System

Technical Journal, 27, 379–423, 623–656.

Stanley, H.E. 1971. Introduction to phase transitions and critical phenomena. Ox-

ford University Press.

Turing, A.M. 1952. The chemical basis of morphogenesis. Philosophical Transactions
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of the Royal Society of London. Series B, Biological Sciences, 237(641), 37–72.

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G.,

Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. 2001. The sequence of the

human genome. Science, 291(5507), 1304.

Watson, JD, & Crick, FHC. 1953. Molecular structure of nucleic acids: a structure

for deoxyribose nucleic acid. Nature, 171(4356), 709–758.

Whitesides, George M., & Grzybowski, Bartosz. 2002. Self-Assembly at All Scales.

Science, 295(5564), 2418–2421.

Witten, T.A., & Sander, L.M. 1981. Diffusion-limited aggregation, a Kinetic Critical

Phenomenon. Physical Review Letters, 47(19), 1400–1403.

C.3 Communities “ID cards”

We present in this section the “ID Cards” of the six most discussed communities of

the subfield community network, ie lists of the most frequent keywords, journals of

publication, articles refered to and journal refered to. These ID Cards allow to grasp in

a fairly good way the scientific content of a given community.
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Table C.2: Community “ID Card”. The community CN contains N = 3684 articles.
Its average internal link weight is < ωin >' 1/22.
aa

Keyword prop σ
complex networks 0.53 260.804
dynamics 0.17 48.214
small-world networks 0.13 129.264
model 0.11 23
internet 0.1 96.383
networks 0.08 41.746
evolution 0.08 30.27
scale-free networks 0.07 98.245
systems 0.07 13.515
organization 0.07 44.6
synchronization 0.06 36.731
topology 0.05 66.625
metabolic networks 0.05 78.053
web 0.04 70.114
stability 0.04 14.258
graphs 0.03 55.364
random graphs 0.03 66.888
small-world 0.03 67.309
complex network 0.03 62.893
community structure 0.03 37.757
saccharomyces-cerevisiae 0.02 9.179
social networks 0.02 56.672
emergence 0.02 30.031
percolation 0.02 38.158
robustness 0.02 24.817

Journal prop σ
PHYS REV E 0.331 119.35
PHYSICA A 0.217 91.76
LECT NOTE COMPUT SCI 0.082 15.05
PHYS REV LETT 0.067 37.27
EUR PHYS J B 0.065 64.21
PROC NAT ACAD SCI USA 0.041 16.63
INT J MOD PHYS C 0.035 39.6
CHIN PHYS LETT 0.031 40.65
CHAOS 0.029 28.95
IEEE INT SYMP CIRC SYST PROC 0.024 17.26
NEW J PHYS 0.024 39.3
EUROPHYS LETT 0.024 27.81
PHYS LETT A 0.024 21.77
INT J BIFURCATION CHAOS 0.023 17.29
J STAT MECH-THEORY EXP 0.023 38.98

Refs Times used
Albert R, 2002, REV MOD PHYS (74), 47 2006
Barabasi AL, 1999, SCIENCE (286), 509 1659
Watts DJ, 1998, NATURE (393), 440 1556
Newman MEJ, 2003, SIAM REV (45), 167 1288
Strogatz SH, 2001, NATURE (410), 268 877
Dorogovtsev SN, 2002, ADV PHYS (51), 1079 671
Albert R, 2000, NATURE (406), 378 635
Jeong H, 2000, NATURE (407), 651 486
Albert R, 1999, NATURE (401), 130 445
Boccaletti S, 2006, PHYS REP (424), 175 420
Pastorsatorras R, 2001, PHYS REV LETT (86), 3200 390
Amaral LAN, 2000, P NATL ACAD SCI USA (97), 11149 388
Jeong H, 2001, NATURE (411), 41 388
Erdos P, 1959, PUBL MATH-DEBRECEN (6), 290 356
Erdos P, 1960, PUBL MATH I HUNG (5), 17 352
Milo R, 2002, SCIENCE (298), 824 321
Newman MEJ, 2002, PHYS REV LETT (89), 8701 317
Ravasz E, 2002, SCIENCE (297), 1551 305
Faloutsos M, 1999, COMP COMM R (29), 251 298
Cohen R, 2000, PHYS REV LETT (85), 4626 296
Barabasi AL, 1999, PHYSICA A (272), 173 294
Girvan M, 2002, P NATL ACAD SCI USA (99), 7821 282
Dorogovtsev SN, 2003, EVOLUTION NETWORKS B 280
Newman MEJ, 2001, P NATL ACAD SCI USA (98), 404 262
Callaway DS, 2000, PHYS REV LETT (85), 5468 258

Refs (Journals) Times used
PHYS REV LETT 9246
NATURE 9101
PHYS REV E 2 8864
SCIENCE 5482
P NATL ACAD SCI USA 4450
PHYSICA A 3563
REV MOD PHYS 2240
PHYS REV E 2047
EUR PHYS J B 1707
SIAM REV 1401
EUROPHYS LETT 1136
J THEOR BIOL 906
PHYS REV E 1 903
ADV PHYS 775
NUCLEIC ACIDS RES 729
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Table C.3: Community “ID Card”. The community SOC contains N = 4447 articles.
Its average internal link weight is < ωin >' 1/199
aa

Keyword prop σ
self-organized criticality 0.276 180.616
model 0.114 26.379
dynamics 0.103 26.429
evolution 0.075 29.45
systems 0.060 8.954
models 0.039 14.474
fluctuations 0.037 36.555
turbulence 0.035 21.968
self-organization 0.034 4.983
behavior 0.034 8.762
avalanches 0.034 64.80
earthquakes 0.033 58.09
noise 0.031 24.895
transport 0.029 15.886
criticality 0.026 47.168
1/f noise 0.025 48.331
deformation 0.024 28.72
complexity 0.024 3.959
growth 0.021 0.808
patterns 0.021 6.377
flow 0.020 9.583
field 0.020 18.164
simulation 0.019 3.255
system 0.019 0.716
phase-transitions 0.018 18.573

Journal prop σ
PHYS REV E 0.078 38.48
PHYSICA A 0.042 22.7
PHYS REV LETT 0.033 25.88
PHYS PLASMAS 0.024 44.37
PHYS REV B 0.018 13.53
J GEOPHYS RES-SOLID EARTH 0.016 38.8
AIP CONF PROC 0.013 9.14
TECTONOPHYSICS 0.013 39.82
PLASMA PHYS CONTROL FUSION 0.011 33.05
GEOPHYS RES LETT 0.011 22.95

Refs Times used
Bak P, 1987, PHYS REV LETT (59), 381 1101
Bak P, 1988, PHYS REV A (38),, 364 712
Bak P, 1996, NATURE WORKS SCI SEL 245
Bak P, 1993, PHYS REV LETT (71), 4083 240
Jensen HJ, 1998, SELF ORG CRITICALITY 207
Olami Z, 1992, PHYS REV LETT (68), 1244 202
Paczuski M, 1996, PHYS REV E A (53), 414 146
Bak P, 1989, J GEOPHYS RES-SOLID (94), 15635 139
Burridge R, 1967, B SEISMOL SOC AM (57), 341 122
Dhar D, 1990, PHYS REV LETT (64), 1613 118
Frette V, 1996, NATURE (379), 49 118
Kadanoff LP, 1989, PHYS REV A (39), 6524 117
Bak P, 1996, NATURE WORKS 115
Manna SS, 1991, J PHYS A 112
Turcotte DL, 1999, REP PROG PHYS (62), 1377 102
Vespignani A, 1998, PHYS REV E (57), 6345 100
Drossel B, 1992, PHYS REV LETT (69), 1629 99
Boffetta G, 1999, PHYS REV LETT (83), 4662 96
Lu ET, 1991, APJ 90
Malamud BD, 1998, SCIENCE (281), 1840 90
Dhar D, 1999, PHYSICA A (263), 4 89
Barabasi AL, 1995, FRACTAL CONCEPTS SUR 88
Chang T, 1999, PHYS PLASMAS (6), 4137 86
Hwa T, 1992, PHYS REV A (45), 7002 86
Newman DE, 1996, PHYS PLASMAS 2 (3), 1858 83

Refs (Journals) Times used
PHYS REV LETT 12181
NATURE 3426
J GEOPHYS RES 2874
PHYS REV B 2815
J GEOPHYS RES-SOL EA 2672
GEOPHYS RES LETT 2605
PHYS REV E 2446
PHYS PLASMAS 2426
SCIENCE 2166
PHYSICA A 2121
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Table C.4: Community “ID Card”. The community ComputSystBio contains N = 1799 articles.
Its average internal link weight is < ωin >' 1/324
aa

Keyword prop σ
gene-expression 0.105 29.811
escherichia-coli 0.09 31.696
expression 0.087 13.642
systems 0.066 7.592
model 0.066 6.579
activation 0.063 15.884
protein 0.061 14.106
complex 0.057 7.46
phosphorylation 0.056 23.345
signal-transduction 0.055 33.656
networks 0.052 17.788
systems biology 0.049 62.627
cells 0.049 11.644
transcription 0.046 18.39
dynamics 0.043 3.358
rhythms 0.043 65.654
simulation 0.04 10.691
binding 0.039 9.445
drosophila 0.035 20.722
robustness 0.033 25.4
mechanism 0.032 9.972
kinetics 0.031 13.075
saccharomyces-cerevisiae 0.031 7.647
receptor 0.03 11.805
in-vivo 0.029 6.412

Journal prop σ
PROC NAT ACAD SCI USA 0.036 13.86
BIOPHYS J 0.028 28.81
J BIOL CHEM 0.025 6.27
J THEOR BIOL 0.025 22.29
NATURE 0.012 8.16
LECT NOTE COMPUT SCI 0.012 -3.58
PLOS COMPUT BIOL 0.011 18.17
GENE DEVELOP 0.01 9.2
BIOINFORMATICS 0.01 10.42
CURR BIOL 0.009 8.44

Refs Times used
Gillespie DT, 1977, J PHYS CHEM-US (81), 2340 159
Dunlap JC, 1999, CELL (96), 271 109
Gardner TS, 2000, NATURE (403), 339 96
Arkin A, 1998, GENETICS (149), 1633 93
Elowitz MB, 2000, NATURE (403), 335 91
Gillespie DT, 1976, J COMPUT PHYS (22), 403 90
Mcadams HH, 1997, P NATL ACAD SCI USA (94), 814 85
Elowitz MB, 2002, SCIENCE (297), 1183 84
Bhalla US, 1999, SCIENCE (283), 381 66
Barkai N, 1997, NATURE (387), 913 65
Kitano H, 2002, SCIENCE (295), 1662 63
Young MW, 2001, NAT REV GENET (2), 702 62
Gibson MA, 2000, J PHYS CHEM A (104), 1876 60
Kume K, 1999, CELL (98), 193 59
Marshall CJ, 1995, CELL (80), 179 59
Gekakis N, 1998, SCIENCE (280), 1564 56
Tyson JJ, 2003, CURR OPIN CELL BIOL (15), 221 56
Shearman LP, 2000, SCIENCE (288), 1013 55
Glossop NRJ, 1999, SCIENCE (286), 766 54
Huang CYF, 1996, P NATL ACAD SCI USA (93), 10078 54
Darlington TK, 1998, SCIENCE (280), 1599 54
Lee K, 2000, SCIENCE (289), 107 53
Reppert SM, 2002, NATURE (418), 935 52
Schoeberl B, 2002, NAT BIOTECHNOL (20), 370 52
Vondassow G, 2000, NATURE (406), 188 52

Refs (Journals) Times used
J BIOL CHEM 4986
P NATL ACAD SCI USA 4928
SCIENCE 4663
NATURE 4556
CELL 3051
EMBO J 1485
J THEOR BIOL 1415
BIOPHYS J 1371
MOL CELL BIOL 1209
NEURON 996
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Table C.5: Community “ID Card”. The community Transcriptomics Data Analysis (TDA) contains N = 628 articles.
Its average internal link weight is < ωin >' 1/43
aa

Keyword prop σ
patterns 0.273 65.409
self-organizing maps 0.216 99.058
gene-expression 0.159 28.356
identification 0.116 17.682
microarray 0.108 79.859
classification 0.100 28.106
cancer 0.095 28.214
gene expression 0.082 36.526
saccharomyces-cerevisiae 0.068 13.212
cell-cycle 0.062 21.492
prediction 0.060 16.642
expression 0.060 4.145
gene-expression data 0.058 95.821
oligonucleotide arrays 0.058 85.248
discovery 0.054 47.311
microarray data 0.052 68.108
cluster-analysis 0.051 67.97
clustering 0.051 29.864
DNA microarray 0.049 66.328
microarrays 0.046 48.629
cDNA microarray 0.044 60.323
hybridation 0.044 31.714
cDNA microarrays 0.043 76.89
gene-expression patterns 0.039 73.138
DNA microarrays 0.039 59.58

Journal prop σ
BIOINFORMATICS 0.057 39.49
BMC BIOINFORMATICS 0.044 34.68
LECT NOTE COMPUT SCI 0.039 2.12
PHYSIOL GENOMICS 0.023 34.87
PROC NAT ACAD SCI USA 0.02 3.75
IEEE IJCNN 0.019 5.98
GENOME RES 0.011 13.64
J BIOMED INFORM 0.011 23.57
J COMPUT BIOLOGY 0.009 15.55
P SOC PHOTO-OPT INSTRUM ENG 0.009 -2.07

Refs Times used
Eisen MB, 1998, P NATL ACAD SCI USA (95), 14863 314
Tamayo P, 1999, P NATL ACAD SCI USA (96), 2907 273
Golub TR, 1999, SCIENCE (286), 531 142
Toronen P, 1999, FEBS LETT (451), 142 123
Spellman PT, 1998, MOL BIOL CELL (9), 3273 96
Schena M, 1995, SCIENCE (270), 467 89
Alizadeh AA, 2000, NATURE (403), 503 88
Tavazoie S, 1999, NAT GENET (22), 281 78
Alon U, 1999, P NATL ACAD SCI USA (96), 6745 77
Brown MPS, 2000, P NATL ACAD SCI USA (97), 262 77
Derisi JL, 1997, SCIENCE (278), 680 68
Cho RJ, 1998, MOL CELL (2), 65 62
Lockhart DJ, 1996, NAT BIOTECHNOL (14), 1675 53
Iyer VR, 1999, SCIENCE (283), 83 51
Wen XL, 1998, P NATL ACAD SCI USA (95), 334 46
Herrero J, 2001, BIOINFORMATICS (17), 126 45
Tusher VG, 2001, P NATL ACAD SCI USA (98), 5116 44
Hastie T, 2001, ELEMENTS STAT LEARNI 42
Alter O, 2000, P NATL ACAD SCI USA (97), 10101 39
Khan J, 2001, NAT MED (7), 673 39
Brown PO, 1999, NAT GENET S (21), 33 38
Bendor A, 1999, J COMPUT BIOL (6), 281 37
Chu S, 1998, SCIENCE (282), 699 36
Lipshutz RJ, 1999, NAT GENET S (21), 20 36
Perou CM, 2000, NATURE (406), 747 34

Refs (Journals) Times used
P NATL ACAD SCI USA 2002
SCIENCE 1057
BIOINFORMATICS 844
NATURE 601
NAT GENET 543
NUCLEIC ACIDS RES 486
J BIOL CHEM 392
CANCER RES 345
GENOME RES 286
CELL 268
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Table C.6: Community “ID Card”. The community Transcriptomics contains N = 2043 articles.
Its average internal link weight is < ωin >' 1/439
aa

Keyword prop σ
saccharomyces-cerevisiae 0.17 67.43
gene-expression 0.12 37.784
messenger-RNA 0.11 48.577
identification 0.11 32.298
expression 0.1 20.177
complex 0.09 17.985
yeast 0.08 48.156
gene 0.07 26.323
protein 0.07 21.22
caenorhabditis-elegans 0.05 57.728

Journal prop σ
J BIOL CHEM 0.039 12.93
MOL CELL BIOL 0.027 19.89
NUCL ACID RES 0.025 26.13
PROC NAT ACAD SCI USA 0.023 8.22
RNA 0.02 41.06
MOL CELL 0.018 24.08
GENE DEVELOP 0.017 18.06
BIOCHEM BIOPHYS RES COMMUN 0.015 13.98
CELL 0.014 15.77
EMBO J 0.013 12.26

Refs Times used
Lander ES, 2001, NATURE (409), 860 108
Ho Y, 2002, NATURE (415), 180 97
Bartel DP, 2004, CELL (116), 281 95
Gavin AC, 2002, NATURE (415), 141 94
Fire A, 1998, NATURE (391), 806 90
Gygi SP, 1999, NAT BIOTECHNOL (17), 994 79
Venter JC, 2001, SCIENCE (291), 1304 72
Uetz P, 2000, NATURE (403), 623 71
Hilleren P, 2001, NATURE (413), 538 67
Lacava J, 2005, CELL (121), 713 63

Refs (Journals) Times used
J BIOL CHEM 5265
CELL 5119
P NATL ACAD SCI USA 5056
NATURE 5043
MOL CELL BIOL 4497
SCIENCE 4243
EMBO J 3835
GENE DEV 3411
NUCLEIC ACIDS RES 2634
MOL CELL 2052
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Table C.7: Community “ID Card”. The community Self-Organized Maps (SOM) contains N = 3495 articles.
Its average internal link weight is < ωin >' 1/169
aa

Keyword prop σ
self-organizing map 0.1 111.867
neural networks 0.08 38.377
self-organizing maps 0.08 85.996
classification 0.06 39.352
model 0.03 -0.268
neural network 0.03 25.875
clustering 0.03 42.989
algorithm 0.03 14.097
prediction 0.02 15.602
maps 0.02 30.932

Journal prop σ
LECT NOTE COMPUT SCI 0.135 40.23
IEEE IJCNN 0.053 46.01
P SOC PHOTO-OPT INSTRUM ENG 0.039 7.33
LECT NOTE ARTIF INTELL 0.036 20.76
IEEE TRANS NEURAL NETWORKS 0.023 30.39
NEURAL NETWORKS 0.023 31.27
NEUROCOMPUTING 0.02 22.97
EXPERT SYST APPL 0.012 22.67
IEEE SYS MAN CYBERN 0.008 9.6
PATT RECOG 0.007 15.54

Refs Times used
Kohonen T, 1982, BIOL CYBERN (43), 59 530
Kohonen T, 1995, SELF ORG MAPS 506
Kohonen T, 1990, P IEEE (78), 1464 401
Haykin S, 1994, NEURAL NETWORKS COMP 275
Kohonen T, 1997, SELF ORG MAPS 269
Kohonen T, 2001, SELF ORG MAPS 263
Vesanto J, 2000, IEEE T NEURAL NETWOR (11), 586 160
Kohonen T, 1989, SELF ORG ASS MEMORY 150
Fritzke B, 1994, NEURAL NETWORKS (7), 1441 134
Sammon JW, 1969, IEEE T COMPUT (18), 401 131

Refs (Journals) Times used
IEEE T NEURAL NETWOR 2202
NEURAL NETWORKS 1612
BIOL CYBERN 1158
SELF ORG MAPS 1133
NEURAL COMPUT 1074
IEEE T PATTERN ANAL 823
P IEEE 757
PATTERN RECOGN 630
SCIENCE 592
NEUROCOMPUTING 532



Appendix D

Complex Systems Science - An
Historical Perspective

In this appendix devoted to the bibliometric study of Complex Systems Science (CSS),

we explore the historic evolution of Complex Systems Science. We present some prelimi-

nary maps of CSS corresponding to different time periods and we build on the properties

of bibliometric coupling to detect the chronological affiliation of communities.

D.1 Complex Systems History

D.1.1 Database

The “Complex Systems” database gathered from WoS contains in total 215 000 records

of articles published from 1950 to 2009. The results presented in the last chapter were

only based on data corresponding to articles published after 2000, ie in the most recent

period. In this section, we present results based on the whole database.

Fig. D.1 displays the number of articles within our database by year of publication.

Its overall increase with time reflects the general increase of scientific production. A

large jump in the number of published articles can be observed around 1990. While

it might be tempting to interprete this jump as a historical event (a sudden interest

for the Complex Systems science or a massive increase in the scientific production due

to the wide circulation of computers), it is in fact merely a bias introduced by the

WoS’s extraction tools. Indeed, when a query is put in WoS, the Topic Keywords of the

query are looked for in the titles, article’s keywords and, in case of publication posterior

to 1990, abstracts. This means that our query looking for specific Topic Keywords

223
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(as defined in Table 5.5) reaches many more articles published after 1990, those which

contain these Topic Keywords exclusively in their abstracts.

To study the historical evolution of the science of complex systems, we divided the

records in several 10-years slices according to their publication year. For each decade,

we build a network where the nodes correspond to the articles published in the corre-

sponding period of time and where a link between two nodes indicates that the papers

corresponding to these nodes share at least one reference. The weight of the link is taken

as the BC cosine distance defined in Eq. 5.1.

Figure D.1: Number of papers within the Complex Systems database by year
of publication.

The general characteristics of these networks are displayed in Table D.1. For the

first decades (roughly until 1985), the number of articles is rather low. The networks

can be easily built and submitted to a manual analysis. For the last decades, the

numbers of articles becomes very important, the mean density 2M/N(N − 1) decreases

with time while the mean distance < ωij >
−1 increases, a sign that the networks are

on average more heterogeneous in recent periods. On the other side, the mean degree

M/N of an article increases with the time period, a sign that the networks contain more

homogeneous subparts.
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Decade Na N 2M/N(N − 1) M/N < ωij >
−1

1960-1969 166 41 0.0902 1.80 55
1965-1974 383 138 0.0315 2.16 266
1970-1979 710 284 0.0298 4.23 490
1975-1984 1118 519 0.0273 7.09 727
1980-1989 1590 895 0.012968 5.80 874
1985-1994 23501 20286 0.004882 49.62 4484
1990-1999 66787 62040 0.003211 99.61 7283
1995-2004 114268 109458 0.002114 115.68 11299
2000-2009 146030 141098 0.001969 138.94 10848

Table D.1: General characteristics of the articles’ BC Networks. For each decade, Na

is the numbers of articles in our database, N is the number of article in the network (ie sharing
at least one reference with at least an other articles of our basis), M is the number of BC links
(hence 2M/N(N − 1) is the density of number of links in the graph and M/N is the mean
number of links in which an article takes part, its degree). The average < ωij > is done on
the N(N − 1)/2 pairs of articles. It can be taken as a measure of a “bibliographic coupling”
network inner-coherence, while< ωij >

−1 can be seen as a characteristic “bibliographic distance”
of each network. Indeed, if the links’ weights were homogeneously distributed, two randomly
chosen articles would share one reference over < ωij >

−1.

D.1.2 Chronologically successive maps

Methods

Starting from the last decades (1985-1995, 1990-1999, 1995-2004 and 2000-2009), we

first obtain a network by applying the Louvain algorithm (Blondel et al, 2008). This

step gives a general perspective on the structuration and evolution of the composition

of our database in terms of large scientific fields. We typically obtain a dozen large field

communities in each decade (see Table D.2). In order to gain a better understanding

on the composition of these fields and on the nature of their links, we apply the same

two-steps procedure introduced last chapter. We group the papers in two hierarchical

community networks for each decade, a rough one (field structuration) and a specific

one (subfields). Applying the Louvain algorithm once to the entire network yields the

field communities. The subfield communities are obtained by

• applying the Louvain algorithm to each field community

• checking if the obtain substructure of each field has is meaningful (internal mod-

ularity Qi ≥ 0.4) and whether each subfield check Eq. D.1 in the global subfield

network. If these two conditions are not respected for a given field, it is kept as a

whole in the subfield network.
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Decade N Qf Cf (Nf ) Qsf Csf (Nsf ) Thr

1985-1994 20286 0.7421 12 (19814) 0.6822 43 (17262) 100
1990-1999 62040 0.75 12 (61460) 0.7034 67 (59739) 100
1995-2004 109458 0.7592 14 (108739) 0.7586 82 (106753) 100
2000-2009 141098 0.7128 11 (139749) 0.6375 79 (135834) 300

Table D.2: Quantitative characterization of the obtained community networks. For
each decade, we report the number of articles within the bibliographic network, the modularity
Qf , the number of field communities Cf containing more than Thr articles (and total number
of articles Nf within) of the field community network obtained by the first run of the Louvain
algorithm. The second run of Louvain algorithm performed independently on each field lead to
subfields community networks whose modularity Qsf and number of communities Csf (of size
superior than Thr) are also reported. Note that the finer partition of the subfield network comes
with a lowering of the modularity.
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Decade Community N < ω >−1 Qi

Self-Organized Criticality (SOC) 925 39.75 0.165
Mitosis 352 53.27 -
Hematology (Hemato) 149 181.28 -

1985 Statistical physics (StatPhys) 302 249.04 -
Molecular Biology (MolBio) 1859 284.55 -

- Neural Networks 2526 569.66 0.407
Cellular Biology (CellBio) 3050 752.38 0.476

1994 Control 825 896.94 0.771
Dynamical Systems 3395 963.51 0.508
Fluid Mechanics & Geoscience (FluidMech Geosc) 971 1502.93 0.738
Material Sciences 2328 1755.14 0.76
Neurosciences 3132 3150.53 0.758
Self-Organized Criticality(SOC) 2650 61.83 0.169
Surface Self-Organization (SurfSO) 975 75.67 0.207
Statistical Physics (StatPhys) 295 126.94 -

1990 CellBio 1671 172.45 -
Epigenomics 10494 896.8 0.475

- Fluid Mechanics & Geosciences (FluidMech Geosc) 2184 1235.54 0.632
Dynamical Systems 9105 1307.73 0.499

1999 Neural Networks 11118 1336.69 0.692
Immunology (Immuno) 4343 2278.94 -
Material Sciences 7472 2534.48 0.679
Neurosciences 6563 3033.74 0.692
Ecology 4403 3952.66 0.663
Circadian Clock (CircClock) 161 19.23 -
Complex Networks (CN) 875 24.2 0.093
Self-Organized Criticality (SOC) 4824 137.08 0.219
Quantum Chaos (Qchaos) 931 292.8 -

1995 Surface Self - Organization (SurfSO) 3441 247.48 0.397
Digital Communication (DigitCom) 3252 719.89 0.573

- NeuralNetworks 13834 964.24 0.512
Dynamical Systems 11837 1311.07 0.542

2004 Molecular and Cellular Biology (MolBio CellBio) 20524 2051.06 0.571
Immunology & Genetic Deseases (Immuno GenDis) 6301 2397.72 -
Material Sciences 13551 2674.78 0.665
Neurosciences 8966 2775.75 0.651
Fluid Mechanics & Geosciences (FluidMech Geosc) 5688 3265.16 0.723
Ecology - Management - Computational Model (EMC) 14279 7437.35 0.704
Complex Networks (CN) 3684 21.87 0.087
Self-Organized Criticality (SOC) 4447 199.3 0.202
Surface Self-Organization (SurfSO) 3809 493.33 0.517

2000 Digital Communication (DigitCom) 6094 988.63 0.579
Dynamical Systems (DynSystems) 13115 1661.96 0.571

- Neural Networks (NN) 21913 1759.12 0.532
Fluid Mechanics (FluidMech) 5534 2689.56 0.685

2009 Material Sciences 19531 3148.04 0.656
Neurosciences 12567 3231.99 0.708
Cellular and Molecular Biology (Biology) 32107 4852.62 0.615
Ecology - Management - Computational Model (EMC) 16948 5560.05 0.708

Table D.3: Fields’ size N , inner coherence < ω >−1 and internal modularity
Qi. Fields whose subfield structure was found to be unsignificative (roughly Qi < 0.2)
are enlightened in colors. In all cases, the biological fields were gathered as a single field
just before the computation of the subfield communities. Hence the lack of some values
of internal modularity and the fact that these communities share the same color on Fig
D.3. In the same way, the Quantum Chaos and Statistical Physics field were merged
with the Dynamic Systems fields before the second partitions.
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This double recursive use of a modularity optimization was also used by (Fortunato

& Barthélemy, 2007), on smaller networks (less than 1000 nodes) and with another

community detection algorithm. They noted that by restricting modularity optimization

to a [single community during the second application of Louvain algorithm], we neglect

all links between the original communities and we have no guarantee that we accurately

detect its substructure and that this is a safe way to proceed. Thus, we have to check

whether all substructures we detected are real [communities], ie if a subcommunity of a

given up community is also a community of the entire network. To do so, they propose

a simple criterion:

a set I of articles is a suitable community if: qI ≥ 0 (D.1)

where qI is the module of a community as defined in Eq. 5.2. We found that this

criterion was well respected for all the subfield communities in all the networks we built.

Figure D.2: 1985-1994’s subfield community network. The surface of a com-
munity I is proportional to its number of articles NI and the width of the link be-
tween two communities I and J is proportional to the mean bibliographic coupling
ωIJ =

∑
i∈I, j∈J ωij/NI NJ . For the sake of clarity, communities with less than 100

articles and links with a mean weight ω < 2.10−5 are not displayed. Labels are based
on a frequency analysis.
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Results

Fig. D.3 displays the largest field community networks obtained for the four successive

and overlapping decades. We first note that these different networks show a remarkable

continuity. At the center of these networks, we find theoretical domains: self-organized

criticality, dynamical systems, complex networks and neural networks. These fields are

linked to more experimental fields (materials science, biology or neurosciences) lying

at the periphery of the networks. Among all these communities, two in particular

stand out. First, the complex networks (CN) community, which appears only from

the 1995-2004 decade since its main founding references (namely Albert & Barabasi,

2002; Barabasi & Albert, 1999; Watts & Strogatz, 1998; Newman, 2003, see appendix

B) were all published after 1995. This community has the strongest coherence : on

average, the mean bibliographic coupling weight between two articles of this community

is < ω >∼ 1/20 (see Table D.3). This value means that two papers taken randomly from

this community very often share a reference. This coherence remained stable while the

number of articles increased from around 900 in the 1995-2004 decade to around 3700

the 2000’s (see Table D.3). The self-organized criticality (SOC) community presents

similar characteristics: its main founding references are well-defined (namely Bak et al,

1987, 1988, see appendix B) and its coherence is among the strongest. However, the

scientific production of this community has begun to decrease (around 4800 articles in the

1990-1999 decade vs around 4400 in the 1995-decade. This decrease is significant when

compared to the general increase of scientific production. In the meantime, the average

coherence decreased from < ω >∼ 1/40 in the 1985-1994 decade to < ω >∼ 1/200 in the

2000-2009 one (see Table D.3). Compared to complex networks, self-organized criticality

seems to be declining as a scientific community.

A point worth noting is that while most communities are close to “standard” disci-

plines such as those of the Web of Science subject index, CN and SOC communities do

not. This shows the importance of using bibliographic coupling to define communities

instead of taking as starting points the Web of Science “subject categories”.

We now come to the level of subfield communities. The subfield networks displayed

on Fig D.2 to D.5 show a rich structure that appears to be quite stable and similar

to the structure of the 2000-2009 decade presented in the previous chapter. We do

not intend to give here a full analysis of the inner composition and the inter-relations

of the subfields displayed on those maps. However, a quick analysis of the database

allow us to check two points. First, the most networking references (see Chapter 5) are

still mainly methodological references, mathematical handbooks or data analysis tools,

although references to Self Organization are also present. Second, trading zones are
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always present. For example, in the 1995-2004 decade, the two communities Circadian

Clock (CircClock) and SelfOrganized Maps and Biological Prediction (SOMBioPred) are

detected as trading zones. They connect the biological community respectively to CN

and Dynamical Systems for the former and to Neural Networks for the latter. It is hence

tempting to identify them to the 1995-2004 decade’s precursor of the Computatinal

Systems Biology and Transcriptomics Data Analysis of the 2000-2009 decade we studied

in Chapter 5. We present in next section a tentative method for detecting such relations

of filiation between communities identified on different time periods.

D.1.3 Communities’s filiation detection

We present in this section a method for detecting and visualizing the chronological

affiliation of communities from one time slice to another. A first way to characterize the

relation between a community A of of given time slice to a community B of a successive

time slice is to compute the relative overlap

o(A, B) =
|A ∩B|
|A ∪B|

where |A ∩B| is the number of common articles between both communities (remember

that there is a 5-years overlap between successive time slices) and |A ∪ B| the total

number of distinct articles within A and B. Communities from successive time slices

can thus be matched one by one in descending order of their relative node overlap. Hence

for example, the communities Complex Network of the 2000-2009’s decade and Complex

Network of the 1995-2004’s decade are matched together with an overlap of 0.17, Self

Oganized Criticality and Self Organized Criticality are matched with an overlap of 0.22,

SOMBioPred and TDA with an overlap of 0.44 and Circadian Clock and ComputSystBio

with an overlap of 0.05.

This last value seems rather low - even by taking into account the exponential in-

crease of the overall scientific production which is expected to bound the overlap value,

and raise the question of the validity of this method. Indeed, if the Circadian Clock and

ComputSystBio share some articles, how can we be sure that the remaining articles are

really related to a common scientific subject?

We have used a second method, based on the computation of the mean ‘Biblio-

graphic Coupling’ (BC) weight between articles of two communities belonging to two

different time slices. We hence characterize the relation between communities of dif-

ferent time slices by their shared references in the same way that we characterize the

relation between communities of the same time slice. The advantage of measuring BC
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weight instead of the overlap is the fact that it allows to estimate a scientific proximity

even when the overlap is null.

To illustrate the informations bring by this method, we propose on Fig D.6 four

“filiation diagrams”. Starting from a 2000-2009 community C (at the top, in red),

these diagrams show the 1995-2004 communities C ′ (in orange) whose references are

most similar to those of community C (we use a BC weight threshold of ωCC′ > 10−4).

The same procedure is repeated on the 1995 − 2004 community most similar to com-

munity C, allowing to see the 1990-1999 communities C ′′ (in yellow) most similar to

it and so on. For example, the Complex Network community of the 2000-2009 decade

builds on its 1995-2004 counterpart, but also on SOC, on some Dynamic systems’ com-

munities (Chaos and Neural Synchronization) some Neural Networks’ communities and

Pattern Formation and Self Organization. The 1995-2004 Complex Network community

is itself based mainly on communities related to the idea of Self Organization. The

Self-Organized Criticality community offers a clear affiliation: SOC is mainly related to

SOC, which is mainly related to SOC. . . The secondary ascendants show communities

known to be related to SOC (Heart Rate, Geophysics, NeuralSynch ).

The case of the ComputSystBio is also interesting from a historical perspective:

models of Circadian Clock and of the enzymatic kinetics implied in Photosynthesis are

known to be at the foundation of modern Systems Biology.

Of course all these observations need to be deepened by a close historical analysis

of the precise shared references between all these communities, the institutions and

personal links at the origin of these evolutions.
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Figure D.3: Community structure obtained for the four studied decades with
a first run of the modularity maximization (Blondel et al, 2008). The surface
of a community I is proportional to its number of articles NI and the width of the link
between two communities I and J is proportional to the mean bibliographic coupling
ωIJ =

∑
i∈I, j∈J ωij/NI NJ . The layout of the graph is obtained thanks to a spring-

based algorithm implemented in the Gephi visualization software (Bastian et al , 2009).
For the sake of clarity, communities with less than 100 articles (300 for the 2000-2009
decade) are not displayed. Labels are based on a frequency analysis. Refer to Table D.3
for accronyms significations.
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Figure D.4: 1990-1999’s subfield community network. The surface of a com-
munity I is proportional to its number of articles NI and the width of the link be-
tween two communities I and J is proportional to the mean bibliographic coupling
ωIJ =

∑
i∈I, j∈J ωij/NI NJ . For the sake of clarity, communities with less than 100

articles and links with a mean weight ω < 2.10−5 are not displayed. Labels are based
on a frequency analysis.
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Figure D.5: 1995-2004’s subfield community network. The surface of a com-
munity I is proportional to its number of articles NI and the width of the link be-
tween two communities I and J is proportional to the mean bibliographic coupling
ωIJ =

∑
i∈I, j∈J ωij/NI NJ . For the sake of clarity, communities with less than 100

articles and links with a mean weight ω < 2.10−5 are not displayed. Labels are based
on a frequency analysis.
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Figure D.6: Community filiation diagrams. A. Complex Networks B. Self-
Organized Criticality C. Computational Systems Biology D. Pattern Formation & Self-
Organisation The surface of a community I is proportional to its number of articles
NI and the width of the link between two communities I and J is proportional to the
mean bibliographic coupling ωIJ =

∑
i∈I, j∈J ωij/NI NJ . Colors corresponds to different

chronological periods (from top to bottom: red, orange, yellow and blue for respectfully
the 2000-2009, 1995-2004, 1990-1999 and 1985-1994 decades). The procedure leading to
these diagrams is explained in the main text. The relative position of the communities
are here meaningless.



Abstract

This thesis explores the problems raised by the aggregation of entities into a global,

collective level, an old problem encountered in many fields of science. We work on three

projects related to the aggregation problem in social systems, using tools derived from

statistical physics, and more generally quantitative tools. Great care is taken to tackle

the questions at the heart of these projects in a mutually beneficial way for both social

and natural sciences.

The first project focus on a paradigmatic model of the emergence of puzzling macro-

scopic behavior from simple individual rules, Schelling’s segregation model. This model

simulates the evolution of the spatial repartition of two types of agents living in a virtual

city. It is widely known for this paradoxical effect: if the agents have a mild preference

for one’s neighbors to be of the same kind, their move lead to segregative pattern at the

global scale, even if total segregation does not maximize the collective utility. We first

use simulations to show that introducing small amount of coordination in the agents’

moving decision can significantly reduce segregation. We then propose an analytical

resolution of Schelling’s model for a wide range of utility functions. Using evolutionary

game theory, we provide existence conditions for a potential function which character-

izes the global configuration of the city and is maximized in the stationary states. We

use this potential function to derive several analytical results. Switching on a physicist

point of view, we generalize our potential function in a simplified version of the model

which interpolate between cooperative and individual dynamics.

The second project is based on the exploration of huge databases on scientific liter-

ature (mostly Web of Science) to investigate the existence and evolution of paradigms

or scientific institutions. We mostly use the old but quite unused bibliographic coupling

(BC) approach, based on a normalized number of shared references, to measure relations

between articles. Using standard techniques to group similar articles, we can define ‘nat-

ural’ communities characterized by their references. Thanks to a large database (141 098

records) of relevant articles, we used this approach to empirically study the ‘complex

systems’ field. We show that the overall coherence of the field does not arise from a

universal theory but rather from computational techniques and fruitful adaptations of

the idea of self organization to specific systems. We also investigate the idea of ‘trad-

ing zones’, small communities creating an interface between disciplines around specific

tools or concepts. We also apply our approach to develop a set of routines allowing to

draw different maps of the research carried out in a scientific institution, specifically

co-occurrence (of authors, keywords, institutions) maps and BC communities maps. We



use the example of the ENS de Lyon to discuss why these maps may become a valuable

tool for institutions’ directors.

Finally, the third project deals with the emergence of ‘institutions’ or ‘structures’ in

social systems. Our collaboration with a team of sociologists has lead us to question the

assumption of a clear dichotomy between two ‘levels’, namely individuals and society.

Building on the social theory developed by Gabriel Tarde at the end of the 19th century,

we explore different possibility to visualize (and conceptualize) the evolution of social

phenomena without making a distinction between two levels. Bibliometric data are used

as an example. We also propose an attempt to formalize Tarde’s theory in the scope of

an algorithmic model. The point is to show how one can obtain ‘wholes’ through the

simplification of complex individuals. While our prototype model fulfil several of Tarde’s

precept, it raises many more questions. Finally, we focus on a single question raised by

our colleagues sociologists: the existence of lasting structure from non lasting entities.

We build on the physicist’s approach developed in opinion models. While most papers

focus on stationary properties, we choose to build a model to investigate the dynamical

properties of social structures which are always changing. The key ingredients of our

model are the introduction of noise in the agents’ interactions, a turnover in the pop-

ulation of agents and a generation effect, the agents taking into account their opinion

and age difference in their interaction. The outcomes of our model display a rich phe-

nomenology of group dynamics. Our point is not to produce realistic representations of

reality, but much more to help the sociologists enrich their conceptualizations of social

phenomena.

Keywords: social systems, collective phenomena, segregation, coordination, com-

plex systems, maps of science, bibliographic coupling, Tarde, opinion model.
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